Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + ... + 3100
Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh .
=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 )
A = 3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 )
A = 3. 40 + ... + 397 . 40
A = 40. ( 3 + ... + 397 )
=> A \(⋮\) 40 ( đpcm )
A = 3 + 32 + 33 + ... + 3100
Số số hạng của A = ( 100 - 1 ) : 1 + 1 = 100 ssh . Ta chia A thanh 25 nhóm , mỗi nhóm cs 4 ssh .
=> A = ( 3 + 32 + 33 + 34 ) + .... + ( 397 + 398 + 399 + 3100 )
A = 3. ( 1 + 3 + 32 + 33 ) + .... + 397.( 1 + 3 + 32 + 33 )
A = 3. 40 + ... + 397 . 40
A = 40. ( 3 + ... + 397 )
=> A 40 ( đpcm )
HT
\(S=2+2^2+2^3+...+2^{100}\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)
\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)
\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)
\(S=3\left(2+2^3+....+2^{99}\right)\)
\(\Rightarrow S⋮3\left(đpcm\right)\)
S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau
S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)
S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)
S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)
các số hạng của S chia hết cho 3 => S chia hết cho 3
Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15
Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15
=> S chia hết cho 15
\(A=2+2^2+2^3+...+2^{100}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{98}.6\)
\(A=6\left(1+2^2+...+2^{98}\right)\)
Có : \(6⋮6\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(\Rightarrow A⋮6\)
suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
ta có :
A = 3 + 32 + 33 + ...+ 359 + 360
A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ...+ ( 358 + 359 + 360 )
A = 3( 1 + 3 + 32) + 34(1+3+32) + ...+ 358(1+3+32 )
A = 3. 13 + 34.13 + ...+ 358.13
=> A chia hết cho 13
Ta chú ý : \(3+3^2+3^3=3\left(1+3+9\right)=3.13\)
\(\Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(\Leftrightarrow A=3.13+3^4.13+...+3^{58}.13\)
\(\Leftrightarrow A=13\left(3+3^4+..+3^{58}\right)⋮13\)
Vậy A chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
\(A=2+2^2+2^3+.......+2^{100},\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+....+2^{98}.6\)
\(A=6\left(1+2^2+.......+2^{98}\right)\)
\(A=6\left(1+2^2+........+2^{98}\right)\text{⋮6}\)