K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

đề = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)( áp dụng c.thức tính tổng )

     = ..........

     = 2 .( \(\frac{1}{2}-\frac{1}{51}\)

     = dễ

29 tháng 7 2017

Ta có góc AYD và góc CYB là 2 góc đối đỉnh nên góc AYD=CYB=5 phần

góc AYCvà góc DYB là 2 góc đối đỉnh nên góc AYC=DYB=4 phần

=> góc AYD=360:(5.2+4.2).5=100 độ

góc BYD=360:(5.2+4.2).4=80 độ

29 tháng 7 2017

Mình nghĩ là đúng rồi vì mình cũng đã có đáp án giống bạn nhưng chưa biết cách làm.

Cảm ơn bạn nhiều lắm!

6 tháng 4 2023

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

6 tháng 4 2023

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

23 tháng 5 2022

`x^2+[-18]/[x^2+x]=3-x`         `ĐK: x \ne -1,x \ne 0`

`<=>[x^2(x^2+x)-18]/[x^2+x]=[(3-x)(x^2+x)]/[x^2+x]`

   `=>x^4+x^3-18=3x^2+3x-x^3-x^2`

`<=>x^4+2x^3-2x^2-3x-18=0`

`<=>x^4-2x^3+4x^3-8x^2+6x^2-12x+9x-18=0`

`<=>x^3(x-2)+4x^2(x-2)+6x(x-2)+9(x-2)=0`

`<=>(x-2)(x^3+4x^2+6x+9)=0`

`<=>(x-2)(x^3+3x^2+x^2+3x+3x+9)=0`

`<=>(x-2)[x^2(x+3)+x(x+3)+3(x+3)]=0`

`<=>(x-2)(x+3)(x^2+x+3)=0`

`<=>` $\left[\begin{matrix} x=2 (t/m)\\ x=-3 (t/m)\\x^2+x+3=0\text{ (Vô nghiệm)}\end{matrix}\right.$

Vậy `S={-3;2}`

23 tháng 5 2022

\(x^2+\dfrac{-18}{x^2+x}=3-x\)

\(\Leftrightarrow x^2-\dfrac{18}{x\left(x+1\right)}=3-x\);\(ĐK:x\ne0;-1\)

\(\Leftrightarrow-\dfrac{18}{x\left(x+1\right)}=3-x-x^2\)

\(\Leftrightarrow\dfrac{18}{x\left(x+1\right)}=x^2+x-3\)

\(\Leftrightarrow\dfrac{18}{x\left(x+1\right)}=x\left(x+1\right)-3\)

Đặt \(x\left(x+1\right)=a\)

\(\Leftrightarrow\dfrac{18}{a}=a-3\)

\(\Leftrightarrow a^2-3a-18=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)

Với `x=6`

`=>`\(x^2+x=6\)

`<=>x^2+x-6=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) \((tm)\)

Với `x=-3`

`=>`\(x^2+x=-3\)

`<=>x^2+x+3=0` ( vô lý )

Vậy \(S=\left\{2;-3\right\}\)

Gọi x,y,z là số học sinh khối 6, 7, 8

(x,y,z>0, đvị là học sinh)

Đã biết khối học sinh lớp 8 ít hơn số hs khối 6 là 120 hs

x-z=120

x, y, z tỉ lệ với 8, 7, 5

x/8=y/7=z/5

Áp dụng tính chất dãy tỉ số bằng nhau có:

x/8=y/7=z/5= x-z/8-5=120/3=40

=> x/8= 40       => x=40.8=320        => số hs khối 6 là 320 hs

y/7= 40                 y=40.7= 280            số hs khối 7 là 280 hs

z/5= 40                 z=40.5=200              số hs khối 8 là 200 hs

27 tháng 10 2021

Bài 4: 

a) áp dụng pi-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{15^2+20^2}=25\)

áp dụng HTL ta có: \(AB.AC=BC.AH\Rightarrow\dfrac{15.20}{25}=AH\Rightarrow AH=12\)

b) áp dụng HTL và ΔAHB ta có: \(AI.AB=AH^2\)

 áp dụng HTL và ΔAHC ta có: \(AJ.AC=AH^2\)

\(\Rightarrow AI.AB=AJ.AC\)

 

27 tháng 10 2021

câu c tưởng là HA.AE=HB.BC chứ nhỉ