Cho ABC, M là trung điểm AC, N là trung điểm AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh: a) AD = BC b) AD // BC c) A là trung điểm của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
a.Xét tg mda và tg mbc có:
am=mc
m1=m2
bm=dm
suy ra tg mad = tg mbc {c.g.c]
b.vì tg mad = tg mbc {cmt}
suy ra c1 =a1{tg ứng};mà 2 góc này là 2 góc kề bù
suy ra:ad//bc
c.nối a với e
xét tg nae và tg nbc có:
na=nb
ne=nc
n1=n2
suy ra tg nae = tg nbc[c.g.c}
suy ra bc=ae{tg ung}
vì bc=ad;bc=ae
suy ra:ad=ae
suy ra :a là trung điểm của de
b: Xét tứ giác AEBC có
N là trung điểm của BA
N là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE//BC
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
Giải
bn tự vẽ hình nha
Xét tam giác AEC có:
AM=MC;EN=NC(gt)
=> MN là đường trung bình của tam giác AEC
=> MN=1/2 AE(1)
xét tam giác ABD có: An=NB ; MB =MD(gt)
=> MN là đường trung bình của tam giác ÂBD
=> MN= 1/2 .AD
Từ câu a) ta có:
MN là đường trung bình của tam giác ACE => MN//AE(1)
MN cũng là đường trung bình của tam giác ABD => MN//AD(2)
từ 1 và 2 theo tiên đề ơ-clit
=> AE và AD là 1 đường thường
=> A.D,E thẳng hàng
=>đpcm
Bạn tự vẽ hình nha!
Xét tam giác AEC có:
AM = MC ; EN = NC (gt)
=> MN là đường trung bình của tam giác AEC
=> MN = 1/2.AE (1)
xét tam giác ABD có: AN = NB ; MB = MD (gt)
=> MN là đường trung bình của tam giác ABD
=> MN = 1/2.AD
Ta có:
MN là đường trung bình của tam giác ACE => MN // AE (CMT) (1)
MN cũng là đường trung bình của tam giác ABD => MN // AD (2)
từ (1) và (2) theo tiên đề Ơ-clit
=> AE và AD là 1 đường thường
=> A,D,E thẳng hàng
=>đpcm
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC