cho d y=(m²+3m-4)x-1 tìm m để d là hàm số bậc nhất b)d đồng biến c)nghịch biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d) là hàm số bậc nhất thì \(m^2+3m-4< >0\)
=>\(\left(m+4\right)\left(m-1\right)< >0\)
=>\(m\notin\left\{-4;1\right\}\)
b: Để (d) đồng biến thì \(m^2+3m-4>0\)
=>(m+4)(m-1)>0
=>m>1 hoặc m<-4
c: Để (d) nghịch biến thì m^2+3m-4<0
=>(m+4)(m-1)<0
=>-4<m<1
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
1: (D): y=(m-2)x+1
(D'): \(y=m^2x-2x+m=x\left(m^2-2\right)+m\)
Để (D) là hàm số bậc nhất thì m-2<>0
=>m<>2
Để (D): y=(m-2)x+1 đồng biến trên R thì m-2>0
=>m>2
Để (D): y=(m-2)x+1 nghịch biến trên R thì m-2<0
=>m<2
2: Để (D)//(D') thì \(\left\{{}\begin{matrix}m^2-2=m-2\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m< >1\end{matrix}\right.\)
=>m=0
3:
a: Khi m=0 thì (D): y=(0-2)x+1=-x+1
b: Gọi \(\alpha\) là góc tạo bởi (D) với trục Ox
Ta có: a=-1
nên \(tan\left(180^0-\alpha\right)=-1\)
=>\(180-\alpha=135^0\)
=>\(\alpha=45^0\)
4:
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-8=-x+1\\y=2x-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=9\\y=2x-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\cdot3-8=-2\end{matrix}\right.\)
Thay x=3 và y=-2 vào (D), ta được:
\(3\left(m-2\right)+1=-2\)
=>3(m-2)=-3
=>m-2=-1
=>m=1
5: Để (D) cắt (D') tại một điểm trên trục hoành thì
\(\left\{{}\begin{matrix}m-2< >m^2-2\\-\dfrac{1}{m-2}=\dfrac{-m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m\ne0\\\dfrac{1}{m-2}=\dfrac{m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)\ne0\\m^2-2=m^2-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{0;1\right\}\\-2m=-2\end{matrix}\right.\)
=>\(m\in\varnothing\)
6: (D): y=(m-2)x+1
=>y=mx-2x+1
Điểm mà (D) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
Lời giải:
Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$
$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$
b.
Để hàm nghịch biến thì $1-m^2<0$
$\Leftrightarrow (1-m)(1+m)<0$
$\Leftrightarrow m> 1$ hoặc $m< -1$
Để hàm đồng biến thì $1-m^2>0$
$\Leftrightarrow (1-m)(1+m)>0$
$\Leftrightarrow -1< m< 1$
\(a,\Leftrightarrow m^2+3m-4\ne0\\ \Leftrightarrow\left(m+4\right)\left(m-1\right)\ne0\\ \Leftrightarrow\left\{{}\begin{matrix}m\ne-4\\m\ne1\end{matrix}\right.\\ b,\Leftrightarrow\left(m+4\right)\left(m-1\right)>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -4\end{matrix}\right.\\ c,\Leftrightarrow\left(m+4\right)\left(m-1\right)< 0\\ \Leftrightarrow-4< m< 1\)