K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

Mấy bạn giúp mình đi mình đang cần gấp lắm

19 tháng 2 2016

Sorrry nha em moi co lop 5

Duyet nha

7 tháng 5 2021

vì số chẵn >3 khi chia luông dư một, số lẻ thì dư hai

mà chẵn.lẻ=chẵn

a khác b nên ab-1 chia hết cho 3

Cách hai: vì một số lí do nào đó nên (ab-1) chia hết cho3

7 tháng 5 2021

chả hiểu gìcar

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

20 tháng 7 2016

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

20 tháng 7 2016

ủng hộ mik nha

6 tháng 2 2016

nhiều quá

3) +)y=1=>1!=1=12

+)y=2=>1!+2!=1+1.2=3(loại vì ko là SCP)

+)y=3=>1!+2!+3!=1+1.2+1.2.3=9=32(thỏa mãn)

với y>4=>1!+2!+3!+...+y! tận cùng là 3 =>ko là SCP

Vì :1!+2!+3!+..+4!=1+1.2+1.2.3+1.2.3.4=33

và 5!;6!;...;y! tận cùng =0

=>1!+2!+3!+..+y! tận cùng là 3

vậy y=1;y=3

=>x=...

6 tháng 2 2016

trời ơi sao nhiều zậy??

17 tháng 1 2016

biết làm nhưng dài dòng lắm , tốn vở

17 tháng 1 2016

Bạn cứ làm đi mình tic cho

14 tháng 2 2016

bai toan @gmail.com

4 tháng 6 2016

a,b \(\notin B\left(3\right)\)nhưng chia 3 có cùng số dư nên số dư là 1 hoặc 2 .Do đó, (a ; b) = (3x + 1 ; 3y + 1) ; (3x + 2 ; 3y + 2) (x,y \(\in Z\))

=> ab - 1 = (3x + 1)(3y + 1) = 9xy + 3x + 3y + 1 - 1 = 3.(3xy + x + y) chia hết cho 3

hoặc ab - 1 = (3x + 2)(3y + 2) - 1 = 9xy + 6x + 6y + 4 - 1 = 9xy + 6x + 6y + 3 = 3.(3xy + 2x + 2y + 1) chia hết cho 3

Vậy a,b nguyên khi chia 3 có cùng số dư khác 0 thì ab - 1 chia hết cho 3 

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

5 tháng 3 2018

Ta có:a ko chia hết cho 3

          b ko chia hết cho 3

          Và ki a và b chia 3 có cùng số dư

Suy ra: Trường hợp 1:a và b có dạng 3k+1

\(\Rightarrow ab-1=\left(3k+1\right)\left(3k+1\right)-1\)

\(\Rightarrow ab-1=9k^2+3k+3k+1-1\)

\(ab-1=9k^2+3k+3k\)

\(\Rightarrow ab-1=3\left(3k^2+k+k\right)⋮3\)(1)

           Trường hợp 1:a và b có dạng 3k+2

\(\Rightarrow ab-1=\left(3k+2\right)\left(3k+2\right)-1\)

\(\Rightarrow ab-1=9k^2+6k+6k+4-1\)

\(ab-1=9k^2+6k+6k+3\)

\(\Rightarrow ab-1=3\left(3k^2+2k+2k+1\right)⋮3\)(2)

Từ (1) và (2)

Suy ra: ab-1 chia hết cho 3 (điều phải chứng minh)