Cho tam giác ABC ,có góc A=90+B,đươngcao CH.
cm:
a,góc CBA=góc ACH
b,CHbình=BH.AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha :)
a) Kẻ đường thẳng BO cắt AC tại K
Vì \(\widehat{BOC}\)là góc ngoài của \(\Delta KOC\) nên \(\widehat{BOC}=\widehat{KOC}+\widehat{OCK}\)
Vì \(\widehat{OKC}\) là góc ngoài của \(\Delta ABK\) nên \(\widehat{OKC}=\widehat{BAK}+\widehat{ABK}\)
\(\Rightarrow\widehat{BOC}=\widehat{BAK}+\widehat{ABK}+\widehat{OCK}\)hay \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
A B C I K 1 2 1 2 x y
a) Góc BIC = 180o - (góc IBC + ICB) (1)
+) Ta có có IBC = góc ABC/2 (vì BI là p.g của góc ABC); góc ICB = ACB/2 (vì CI là p/g của góc ACB)
=> góc IBC + ICB = góc (ABC + ACB)/2 = (180o - góc BAC)/2
(1) => góc BIC = 90o + (góc BAC/2)
b) góc BKC = 180o - (góc B2 + C2)
+) góc B2 = B1 = góc ABx/ 2= (180o - ABC)/2
+) góc C2 = góc C1 = góc ACy/2 = (180o - ACB)/2
=> góc B2 + C2 = (360o - ABC - ACB)/2 = (360o - 180o + BAC)/2 = (180o + BAC)/2
(2) => góc BKC = 90o - (BAC/2)
a, từ A=90°+B
->B=90°_A
Xét Tam giác AHC vuông tại H
ACH=90°-A
->B=ACH