Cho hình thang ABCD , đáy lớn CD gấp 3 lần đáy nhỏ AB . hai đường chéo AC và BD cắt nhau tại điểm O :
a) hãy so sánh S của 2 hình tam giác ABC và BCD .
b) chứng tỏ rằng S cảu AOD = S của BOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 tam giác ABC và BCD có cùng đường cao là đường cao = đương cao hình thang đáy DC = 2AB --> diện tich BCD gấp đôi
b) dễ dàng cm được diện tích tam giác diện tích tam giác ADC = BDC chúng có phần chung DOC còn lại phần riêng AOD = BOC
Vì AB//CD
nên \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
Ta có: \(\dfrac{S_{BOA}}{S_{BOC}}=\dfrac{OA}{OC}\)
\(\dfrac{S_{BOA}}{S_{AOD}}=\dfrac{OB}{OD}\)
mà \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
nên \(S_{BOC}=S_{AOD}\)