K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: A và CD nằm cùng một phía so với đường O'O

góc ABC=góc AEC=góc ICD

góc DBC=gsoc AED=góc IDC

=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC

=góc ICD+góc IDC+góc DIC=180 độ

=>BCID nội tiếp

TH2: A và CD nằm khác phía so với O'O

ABCE nội tiếp (O)

=>góc BCE+góc BAE=180 độ

=>góc BCE=góc BAF

Tương tự, ta được: góc BAF=góc BDI

=>góc BCE=góc BDI

=>góc BCI+góc BDI=180 độ

=>BCID nội tiếp

b: góc ICD=góc CEA=góc DCA

=>góc ICD=góc DCA

Chứng minh tương tự, ta được: góc IDC=góc CDA

Xét ΔICD và ΔACD có

góc ICD=góc DCA

CD chung

góc IDC=góc CDA

=>ΔICD=ΔACD

=>DI=DA và CI=CA

=>CD là trung trực của AI

c:
CD vuông góc AI

=>AI vuông góc MN

Gọi K là giao của AB và CD

Chứng minh được CK^2=KA*KB=KD^2

=>KC=KC

CD//MN

=>KC/AN=KD/AM=KB/AB

=>AN=AM

=>ΔIMN cân tại I

=>IA là phân giác của góc MIN

16 tháng 4 2020

412 + (340 - x) = 633

26 tháng 7 2019

a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC

Tương tự ta có OF =  1 2 DB

Mà BC < BD ta suy ra OE < OF

b, Chứng minh được  A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2

Từ đó ta có A E 2 > A F 2 => AE > AF

=> sđ  A E ⏜ ; A F ⏜

15 tháng 3 2019

Phải là AF cắt BE tại Q ms đúng , mk ghi lầm .

15 tháng 3 2019

A B E F P Q O

Vì E, F thuộc (O) nên: \(\widehat{AEB}=\widehat{AFB}=90^o\)(Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\)AF, BE là hai đường cao của tam giác APB.

Mà AF và BE cắt nhau tại Q. Nên Q là trực tâm của tam giác APB.

\(\Rightarrow\)PQ là đường cao thứ 3 \(\Rightarrow PQ\perp AB\left(đfcm\right)\)

6 tháng 5 2017

a) Chứng minh tam giác MAB đồng dạng tam giác MFC 

b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)

c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang

d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH

\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH

BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2

13 tháng 10 2018

a, Chứng minh:  A B E ^ = A D E ^

b, Chứng minh được:  A C B ^ = B N M ^

=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn

=> BC là đường kính =>  B E C ^ = 90 0