Cho đường tròn (O) và 6 điểm A, B, C, F, E, D đều thuộc đường tròn theo đúng thứ tự đó (không cặp hay nhóm điểm nào trong số 6 điểm trên trùng nhau). AE cắt BD tại M, AF cắt CD tại N và BF cắt CE tại P. Chứng minh rằng M, N, P thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: A và CD nằm cùng một phía so với đường O'O
góc ABC=góc AEC=góc ICD
góc DBC=gsoc AED=góc IDC
=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC
=góc ICD+góc IDC+góc DIC=180 độ
=>BCID nội tiếp
TH2: A và CD nằm khác phía so với O'O
ABCE nội tiếp (O)
=>góc BCE+góc BAE=180 độ
=>góc BCE=góc BAF
Tương tự, ta được: góc BAF=góc BDI
=>góc BCE=góc BDI
=>góc BCI+góc BDI=180 độ
=>BCID nội tiếp
b: góc ICD=góc CEA=góc DCA
=>góc ICD=góc DCA
Chứng minh tương tự, ta được: góc IDC=góc CDA
Xét ΔICD và ΔACD có
góc ICD=góc DCA
CD chung
góc IDC=góc CDA
=>ΔICD=ΔACD
=>DI=DA và CI=CA
=>CD là trung trực của AI
c:
CD vuông góc AI
=>AI vuông góc MN
Gọi K là giao của AB và CD
Chứng minh được CK^2=KA*KB=KD^2
=>KC=KC
CD//MN
=>KC/AN=KD/AM=KB/AB
=>AN=AM
=>ΔIMN cân tại I
=>IA là phân giác của góc MIN
a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC
Tương tự ta có OF = 1 2 DB
Mà BC < BD ta suy ra OE < OF
b, Chứng minh được A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2
Từ đó ta có A E 2 > A F 2 => AE > AF
=> sđ A E ⏜ ; A F ⏜
Vì E, F thuộc (O) nên: \(\widehat{AEB}=\widehat{AFB}=90^o\)(Góc nội tiếp chắn nửa đường tròn).
\(\Rightarrow\)AF, BE là hai đường cao của tam giác APB.
Mà AF và BE cắt nhau tại Q. Nên Q là trực tâm của tam giác APB.
\(\Rightarrow\)PQ là đường cao thứ 3 \(\Rightarrow PQ\perp AB\left(đfcm\right)\)
a) Chứng minh tam giác MAB đồng dạng tam giác MFC
b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)
c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang
d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH
\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH
BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2
a, Chứng minh: A B E ^ = A D E ^
b, Chứng minh được:
A
C
B
^
=
B
N
M
^
=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn
=> BC là đường kính => B E C ^ = 90 0