Tìm x biết 2^4(2x+11)^2=4^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) =>2x+4+4+x=11
=>2x+4+4+x-11=0
=>3x-3=0
=>3x=3
=> x=1
Vậy x thuộc {1}
2)=>x+x+1+2x+4=3
=>x+x+1+2x+4-3=0
=>4x+2=0
=>4x=-2
=>x=-2/4
=>x=-1/2
Vậy x thuộc {-1/2}
\(a,3\left(x-12\right)-2\left(2x-4\right)=3-2\left(x-11\right)\)
\(3x-36-4x+8=3-2x+22\)
\(3x-4x+2x=3+22+36-8\)
\(x=53\)
\(a,3\left(x-12\right)-2\left(2x-4\right)=3-2\left(x-11\right)\)
\(3x-36-4x+8=3-2x+22\)
\(3x-4x+2x=3+22+36-8\)
\(x=53\)
\(b,5\left(x-7\right)-4\left(x-8\right)=5-2\left(x-4\right)+2x\)
\(5x-35-4x+32=5-2x+8+2x\)
\(5x-4x+2x-2x=5+8+35-32\)
\(x=16\)
Chả biết đúng hay sai. Làm đại vậy.
a)\(\left|2x-6\right|+\left|x+3\right|=8\)
Áp dụng dạng: \(f\left(x\right)=ax+b\Leftrightarrow x=-\frac{b}{a}\) Ta có:
\(\left|2x-6\right|=\left|2x+\left(-6\right)\right|\Leftrightarrow x=\left|-\frac{-6}{2}\right|=3\) (1)
\(\left|x+3\right|=\left|1x+3\right|=\left|-\frac{3}{1}\right|=3\) (2)
Do \(\left(1\right)+\left(2\right)=\left|2x-6\right|+\left|x+3\right|=6\) (3).Nhưng theo giả thiết thì:
\(\left|2x-6\right|+\left|x-3\right|=8\) (4)
Lấy (4) - (3) được 2. Nên suy ra: \(x=3-2=1\)
b) Tương tự bài a . Ta cũng tìm được x = 1
a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)
\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)
\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)
1) \(\left|x\right|< 10\)
\(\Leftrightarrow-10< x< 10\)
2) \(\left|x\right|>11\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -11\\x>11\end{matrix}\right.\)
3) \(\left|x\right|\ge2x\left(\forall x\ge0\right)\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x\le-2x\\x\ge2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\le0\\x\le0\end{matrix}\right.\)
\(\Leftrightarrow x=0\) \(\left(thỏa.đk:x\ge0\right)\)
4) \(\left|x\right|\le-3x\left(\forall x\le0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\left(-3x\right)\\x\le-3x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\le0\\4x\le0\end{matrix}\right.\)
\(\Leftrightarrow x\le0\) \(\left(thỏa.đk\right)\)
a) x – 2 = -6 + 17
x – 2 = 11
x = 11 + 2 = 13
b) x + 2 = -9 – 11
x + 2 = -20
x = -20 – 2 = -22
c) 2x + 5 = x – 1
2x – x = -1 – 5
x = -6
d) | x – 4 | = | -81 |
x – 4 = 81 hoặc x – 4 = -81
x = 81 + 4 hoặc x = -81 + 4
x = 85 hoặc x = -77
1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\)
2) \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)
\(\Leftrightarrow4x=-\dfrac{20}{7}\)
\(\Leftrightarrow x=-\dfrac{5}{7}\)
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
\(2^4\left(2x+11\right)^2=4^2\)
\(\Rightarrow16\left(2x+11\right)^2=16\)
\(\Rightarrow\left(2x+11\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x+11=1\\2x+11=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-10\\2x=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}\)
Vậy: \(x\in\left\{-5;-6\right\}\)