K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

Vì \(a>b\) nên \(a=b+m\)   \(\left(m\inℕ^∗\right)\)

Ta có : \(\frac{a}{b}=\frac{b+m}{b}=1+\frac{m}{b}\)

         \(\frac{a+c}{b+c}=\frac{b+m+c}{b+c}=1+\frac{m}{b+c}\)

Mà \(\frac{m}{b}>\frac{m}{b+c}\) nên \(1+\frac{m}{b}>1+\frac{m}{b+c}\)

hay \(\frac{a}{b}>\frac{a+c}{b+c}\)   (đpcm)

Theo cj nghĩ : 

\(a>b\Rightarrow a-b>0\left(a;b\inℕ^∗\right)\)

Mà : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)

Do đó : \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

15 tháng 8 2018

bạn ơi bạn làm dc chưa

26 tháng 8 2019

a) Ta có:  a<b

                =>a.n<b.n

               =>a.n+a.b< b.n +a.b

               =>a(b+n)<b(a+n)

               =>\(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

Vậy nếu a<b thì a/b <a+n / b+n

  b) Ta có :  a>b

=>a.n>b.n

=>a.n+a.b>b.n+a.b

=>a(b+n)>b(a+n)

=>a/b>a+n/b+n

   Vậy a>b thì a/b> a+n/b+n

  c) Ta có : a=b

=>a.n=b.n

=>a.n+ a.b =b.n+a.b

=>a(b+n)=b(a+n)

=>a/b=a+n/b+n

  Vậy a= b thì a/b =a+n/b+n

18 tháng 8 2015

a) a<b

=>ac<bc  (vi c>0)

=>ac+ab<bc+ab

=>a(b+c)<b(a+c)

=>a/b<a+c/b+c

b) lam nguoc lai cau a

1 tháng 7 2015

a)Do b,d>0

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)

b)Do b,d>0

=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

(a+b+c)(1/a+1/b+1/c)=<10?

ài này phải có thêm đk là 1 ≤ a, b, c ≤ 2 ; nếu ko có đk này thì bđt chưa đúng như bác Hoàng Khôi đã dẫn ra chổ sai 
hơn nữa tôi có thấy bài này 1 lần có đk đó: a, b, c thuộc [1,2] 
và vp-two có giải là: (a+b+c)(1/a+1/b+1/c) ≥ 9 
(chứ không phải là ≤ 9 như @Inguyenmai đâu nha) 
- - - 
cần cm: (a+b+c)(1/a+1/b+1/c) ≤ 10 (♥) 
<=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 7 (♥♥) 

không giãm tính tổng quát giả sử 1 ≤ a ≤ b ≤ c ≤ 2 
ta có: (a-b)(b-c) ≥ 0 <=> ab+bc ≥ b² + ac (*) 

chia 2 vế của (*) cho bc ta có: a/c + 1 ≥ b/c + a/b (1*) 
chia 2 vế của (*) cho ab ta có: 1 + c/a ≥ c/b + b/a (2*) 

lấy (1*) + (2*) và đổi hướng bđt ta có: 
b/c + a/b + c/b + b/a ≤ 2 + a/c + c/a 
=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(a/c + c/a) (**) 

do giả thiết: 1 ≤ a ≤ c ≤ 2 nên 1 ≤ c/a ≤ 2 => c/a - 2 ≤ 0 và c/a - 1/2 ≥ 0 
=> (c/a - 1/2)(c/a - 2) ≤ 0 <=> (c/a)² - (5/2)(c/a) + 1 ≤ 0 
=> (c/a)² + 1 ≤ (5/2).(c/a) (tiếp theo là chia hai vế cho c/a ) 
=> c/a + a/c ≤ 5/2 ; thay vào (**) ta có 
a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(5/2) = 7 vây (♥♥) đúng => (♥) đúng 

dấu "=" khi c/a = 2 => c = 2, a = 1 , (b = 1 hoặc b = 2) 
tức dấu "=" tại: a = b = 1; c = 2 hoặc a = 1, b = c = 2 và các hoán vị 

p/s:tham khảo

14 tháng 3 2018

K hiểu