K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 12 2021

\(y'=6x^2+6x-12=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(-1\right)=14\) ; \(y\left(1\right)=-6\) ; \(y\left(5\right)=266\)

\(\Rightarrow\min\limits_{\left[-1;5\right]}y=-6\) ; \(\max\limits_{\left[-1;5\right]}y=266\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

NV
11 tháng 9 2021

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

4 tháng 3 2018

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - - 1  =  2 1  = 2, y(0) =  2 0  = 1, y(1) =  2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

16 tháng 9 2019

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - ( - 1 )  = 2 1  = 2, y(0) = 2 0  = 1, y(1) = 2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

16 tháng 2 2017

Chọn C

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

4 tháng 11 2017

Đáp án B

Tập xác định: D = ℝ \ 1 2 ⇒  Hàm số y = m x + 1 2 x − 1  liên tục và đơn điệu trên 1 ; 3  

  ⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5

  ⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3

Vậy có 2 giá trị m thỏa mãn.

NV
6 tháng 11 2021

c.

\(f\left(x\right)=2x^2-3x\)

\(-\dfrac{b}{2a}=\dfrac{3}{4}\notin\left[4;6\right]\)

\(f\left(4\right)=20\) ; \(f\left(6\right)=54\)

\(\Rightarrow y_{max}=54\) ; \(y_{min}=20\)

d.

\(f\left(x\right)=-2x^2+x-3\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-4;2\right]\)

\(f\left(-4\right)=-39\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{23}{8}\) ; \(f\left(2\right)=-9\)

\(\Rightarrow y_{max}=-\dfrac{23}{8}\) ; \(y_{min}=-39\)

6 tháng 11 2021

em cảm ơn cô/thầy ạ

15 tháng 10 2017