K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2021

Gọi A, B lần lượt là giao điển của \(\left(d\right)\) với 2 trục \(Ox,Oy\)

Ta có : \(A\left(\dfrac{-2}{2m-1},0\right);B\left(0,2\right)\)

Gọi OH là khoảng cách từ \(\left(d\right)\) đến gốc O

Áp dụng hệ thức lượng trong tam giác vuông :

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\dfrac{-2}{2m-1}\right)^2}+\dfrac{1}{2^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow4=\left(2m-1\right)^2+1\)

\(\Leftrightarrow4=4m^2-4m+1+1\)

\(\Leftrightarrow4m^2-4m-2=0\)

\(\Leftrightarrow2m^2-2m+1=0\)

\(\Leftrightarrow\) Ko tìm đc m

 

5 tháng 12 2021

PT giao Ox và Oy:

\(\left\{{}\begin{matrix}y=0\Rightarrow x=\dfrac{2}{1-2m}\Rightarrow A\left(\dfrac{2}{1-2m};0\right)\Rightarrow OA=\dfrac{2}{\left|2m-1\right|}\\x=0\Rightarrow y=2\Rightarrow B\left(0;2\right)\Rightarrow OB=2\end{matrix}\right.\)

Gọi H là chân đường cao từ O đến \(\left(d\right)\Rightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{\left(2m-1\right)^2+1}{4}=1\\ \Leftrightarrow\left(2m-1\right)^2+1=4\\ \Leftrightarrow\left(2m-1\right)^2=3\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{3}}{2}\\m=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:

1(m-1)+4=2

=>m-1+4=2

=>m+3=2

=>m=-1

b:

(d): y=(m-1)x+4

=>(m-1)x-y+4=0

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)

Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)

=>\(\sqrt{\left(m-1\right)^2+1}=2\)

=>\(\left(m-1\right)^2+1=4\)

=>\(\left(m-1\right)^2=3\)

=>\(m-1=\pm\sqrt{3}\)

=>\(m=\pm\sqrt{3}+1\)

12 tháng 3 2023

- Gọi M(x0,y0) ,N(x1,y1) lần lượt là giao điểm của đường thẳng (d): \(y=\left(2m-3\right)x-1\) với trục tung, trục hoành \(\Rightarrow x_0=y_1=0\).

Vì M(0;y0) thuộc (d) nên: \(y_0=\left(2m-3\right).0-1=-1\)

\(\Rightarrow M\left(0;-1\right)\) nên \(OM=1\) (đvđd)

    \(N\left(x_1;0\right)\) thuộc (d) nên: \(\left(2m-3\right)x_1-1=0\Rightarrow x_1=\dfrac{1}{2m-3}\)

\(\Rightarrow N\left(\dfrac{1}{2m-3};0\right)\) nên \(ON=\dfrac{1}{2m-3}\) (đvđd)

*Hạ OH vuông góc với (d) tại H \(\Rightarrow OH=\dfrac{1}{\sqrt{5}}\)

Xét △OMN vuông tại O có OH là đường cao.

\(\Rightarrow\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{1}{OH^2}\)

\(\Rightarrow1+\left(2m-3\right)^2=5\)

\(\Rightarrow2m-3=\pm2\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

 

 

12 tháng 3 2023

a: loading...

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)

=>m+1=2

=>m=1

c:

(d'): y=(m+1)x+6

=>(m+1)x-y+6=0

Khoảng cách từ O đến (d') là:

\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)

Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)

=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)

=>\(\left(m+1\right)^2+1=2\)

=>\(\left(m+1\right)^2=1\)

=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

c: y=(m-1)x+4

=>\(\left(m-1\right)x-y+4=0\)

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)

Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)

=>\(\sqrt{\left(m-1\right)^2+1}=2\)

=>\(\left(m-1\right)^2+1=4\)

=>\(\left(m-1\right)^2=3\)

=>\(m-1=\pm\sqrt{3}\)

=>\(m=\pm\sqrt{3}+1\)

11 tháng 12 2015

m Khác 1 ( h/s ố không qua O )

+ x =0 => y = m -1   A(0;m-1)

+y =0 => x =1-m  B(1-m;0)

Áp dụng HTL trong tam gics AOB vuông tại O

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(1-m\right)^2}=\frac{1}{\sqrt{2}^2}\)

Hay (m-1)2 =4  => /m -1/ = 2 => m =3 hoặc m =-1

24 tháng 11 2023

a: Để hàm số nghịch biến trên R thì 2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

b; Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:

\(\left(-1\right)\left(2m-1\right)+m-1=0\)

=>-2m+1+m-1=0

=>-m=0

=>m=0

c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:

\(1\left(2m-1\right)+m-1=4\)

=>2m-1+m-1=4

=>3m=6

=>m=2

Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)

=>3x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)