K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhanh lên ko mk nhờ công chúa giá băng giải hộ mk nha ,mk thấy p ấy giải nhìu bài siêu lắm 

17 tháng 2 2016

lôgarit cơ số 5 của 9

22 tháng 8 2023

 a) Vì \(1,3>1\) nên hàm số \(y=1,3^x\)  là hàm số đồng biến trên \(\mathbb{R}.\)

Mà \(0,7>0,6\) nên \(1,3^{0,7}>1,3^{0,6}\)

b) Vì \(0,75< 1\) nên hàm số  là hàm số nghịch biến trên \(\mathbb{R}.\)

Mà \(-2,3>-2,4\) nên \(0,75^{-2,3}>0,75^{-2,4}\)

a: 1,3>1

=>HS y=1,3x đồng biến trên R

=>\(1.3^{0.7}>1.3^{0.6}\)

b: 0,75<1

=>HS y=0,75x nghịch biến trên R

-2,3>-2,4

=>\(0,75^{-2,3}< 0,75^{-2,4}\)

16 tháng 8 2023

a) Ta có:

\(2=1+1=1+\sqrt{1}\)

Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)

\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)

\(\Rightarrow2< \sqrt{2}+1\)

b) Ta có:

\(1=2-1=\sqrt{4}-1\)

Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)

\(\Rightarrow1>\sqrt{3}-1\)

c) Ta có:

\(10=2\cdot5=2\sqrt{25}\)

Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)

\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)

\(\Rightarrow10< 2\sqrt{31}\)

d) Ta có:

\(-12=-3\cdot4=-3\sqrt{16}\)

Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)

\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)

\(\Rightarrow-12< -3\sqrt{11}\)

20 tháng 8 2023

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).

 

 

19 tháng 6 2021

`A=(2-1)(2+1)(2^2+1)...(2^16+1)`

`=(2^2-1)(2^2+1)....(2^16+1)`

`=(2^4-1)....(2^16+1)`

`=2^32-1<2^32`

`=>A<B`

22 tháng 8 2023

a) Vì \(\pi>1\) nên hàm số \(log_{\pi}x\) đồng biến trên\(\left(0;+\infty\right)\)

Mà \(0,8< 1,2\) nên \(log_{\pi}0,8< log_{\pi}1,2\)

b) Vì \(0,3>1\)  nên hàm số \(log_{0,3}x\)  nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(2<2,1\) nên \(log_{0,3}2>log_{0,3}2,1\)
27 tháng 9 2023

a) \(6=\sqrt[3]{6^3}=\sqrt{216}>\sqrt[3]{208}=2\sqrt[3]{26}\)

b) \(2\sqrt[3]{6}=\sqrt[3]{2^3.6}=\sqrt[3]{48}>\sqrt[3]{47}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).

b)      Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).

c)      Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).

a: -2/3<0<1/200

b: 139/138>1

1375/1376<1

=>139/138>1375/1376

c: -11/33=-1/3=-25/75<-25/76

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) \(6 > 5\)

b) \( - 5\) là số nguyên âm nên \( - 5 < 0\)

c) \( - 6\) là số nguyên âm, 5 là số nguyên dương nên \( - 6 < 5\)

d) \( - 8\) và \( - 6\) là các số nguyên âm và có số đối lần lượt là 8 và 6.

\(8 > 6 \Rightarrow  - 8 <  - 6\)

e) 3 là số nguyên dương, \( - 10\) là số nguyên âm nên \(3 >  - 10\)

g) \( - 2\) và \( - 5\) là các số nguyên âm có số đối lần lượt là 2 và 5.

\(2 < 5 \Rightarrow  - 2 >  - 5\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)      Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)

Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).

b)      Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).

c)      Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)  

Do  \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .

d)      Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;

\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).

Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Mà \(4,8< 5,2\Rightarrow log_{\dfrac{1}{2}}4,8>log_{\dfrac{1}{2}}5,2\)

b, Ta có: \(log_{\sqrt{5}}2=2log_52=log_54\)

Hàm số \(y=log_5x\) có cơ số 5 > 1 nên hàm số đồng biến trên \(\left(0;+\infty\right)\)

Do \(4>2\sqrt{2}\Rightarrow log_54>log_52\sqrt{2}\Rightarrow log_{\sqrt{5}}2>log_52\sqrt{2}\)

c, Ta có: \(-log_{\dfrac{1}{4}}2=-\dfrac{1}{2}log_{\dfrac{1}{2}}2=log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}\)

Hàm số \(y=log_{\dfrac{1}{2}}x\) có cơ số \(\dfrac{1}{2}< 1\) nên nghịch biến trên \(\left(0;+\infty\right)\)

Do \(\dfrac{1}{\sqrt{2}}>0,4\Rightarrow log_{\dfrac{1}{2}}\dfrac{1}{\sqrt{2}}< log_{\dfrac{1}{2}}0,4\Rightarrow-log_{\dfrac{1}{4}}2< log_{\dfrac{1}{2}}0,4\)