K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(n=1\)

29 tháng 1 2016

n nhỏ nhất là 1 

23 tháng 1 2017

dung roi day minh vua lam violimpic xong

2 tháng 2 2017

n=1

vì 1+ 5.1+1 =1+5+1=7 (thỏa mãn vì 7 là số nguyên tố)

Vậy n = 1

2 tháng 2 2017

n=1 

vì 1+5.1+1 =1+5+1=7

7 tháng 3 2016

đáp án là 1

7 tháng 3 2016

sao k ai giai vay ?

30 tháng 1 2016

n^2+5n+1=n.(n+5)+1

 Với n E N thì n+5>1

 => n^2+5n+1 là số nguyên tố <=>n=1

 Thử lại thấy đúng,vậy n=1

 

20 tháng 2 2016

n2+ 5n+ 1= n.n+ 5.n+ 1

               = (5+ n). n+ 1 là số nguyên tố

Mà n nguyên dương nhỏ nhất nên (5+ n). n là hợp số

Suy ra (5+ n). n+ 1= 7

          (5+ n). n= 6

=> n= 1

13 tháng 2 2016

n=2

duyệt đi

13 tháng 2 2016

4 , ủng hộ mk nha

16 tháng 2 2016

n=1 thi ta co so nguyen to nho nhat

16 tháng 2 2016

Số nhỏ nhất là:1 nha bạn

6 tháng 12 2023

Ta thấy \(87=1.87=3.29\) nên ta xét 2TH

 TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)

 Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.

 TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)

 Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)

 TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)

Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.

 TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:

   TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.

   TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)

 Vậy, số cần tìm là 11999.

  

S(n).S(n+1)=3.29=1.87S(n).S(n+1)=3.29=1.87

- Nếu S(n)=1⇒S(n)=1⇒ nn có dạng 100...0100...0 S(n+1)=2≠87⇒S(n+1)=2≠87 (loại)

S(n).S(n+1)=3.29⇒S(n).S(n+1)=3.29

Gọi nn có dạng ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...aka1a2...ak¯ với aiN;a1≠0ai∈N;a1≠0

- Nếu ak≠9⇒S(n+1)=S(n)+1⇒S(n)ak≠9⇒S(n+1)=S(n)+1⇒S(n) và S(n+1)S(n+1) luôn khác tính chẵn lẻ S(n).S(n+1)⇒S(n).S(n+1) là một số chẵn, mà 87 lẻ  loại

ak=9⇒ak=9 S(n)>S(n+1)⇒{S(n)=29S(n+1)=3⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3 S(n)−S(n+1)=26⇒S(n)−S(n+1)=26

Giả sử tận cùng bằng xx số 9 n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯A9...9⇒n=A9...9¯ với A có tận cùng khác 9

n+1=¯¯¯¯¯¯¯¯¯¯¯¯¯¯B0...0⇒n+1=B0...0¯ (x số 0 và B=A+1B=A+1)

{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1

S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3

Vậy n=¯¯¯¯¯¯¯¯¯¯¯¯A999⇒S(n)=S(A)+27=29⇒S(A)=2n=A999¯⇒S(n)=S(A)+27=29⇒S(A)=2

Mà nn nhỏ nhất khi AA nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 A=2⇒A=2

n=2999