tìm 3 số nguyên tố a,b,c biết ab + ba = c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có ab - ba là số chính phương
=> 10a + b - 10b - a là số chính phương
=> 9a - 9b là số chính phương
=> 9(a-b) là số chính phương
Mà 9 là số chính phương
=> a-b là là số chính phương
Mà 9\(\ge a>b>0\) => \(0< a-b< 9\)
=> a - b \(\in\left\{1;4\right\}\)
TH1: a - b = 1
Mà ab là số nguyên tố
=> ab = 43
TH2: a - b = 4
Mà ab là số nguyên tố
=> ab = 73
Có ab - ba là số chính phương
=> 10a + b - 10b - a là số chính phương
=> 9a - 9b là số chính phương
=> 9(a-b) là số chính phương
Mà 9 là số chính phương
=> a-b là là số chính phương
Mà 9≥a>b>0≥�>�>0 => 0<a−b<90<�−�<9
=> a - b ∈{1;4}∈{1;4}
TH1: a - b = 1
Mà ab là số nguyên tố
=> ab = 43
TH2: a - b = 4
Mà ab là số nguyên tố
=> ab = 73
a)
p=(2,3,5,7 ...)
p^2=(4,9,25,49...)
p^2+44=(48,53,93..)
có 53 nguyên tố
ds: p=3
b).p=(6,7,8 ...)
2p+1=(13,15,17...)
4p+1=(25,29,33.....)
l25=5.5=> 4p+1 là hợp số
c)p+6=(02,03,05, ...)
p+8 =(04,05,07,....)
p+12=(08,09,11,...)
P+14=(10,11,13,...)
ds: 5,7,11,13
2.
(ab-ba)=97-79=18=2.9 loại
(ab-ba)=93-39= loại 39 ko nguyen tố
(ab-ba)=73-37=26=13.2 loại
(ab-ba)=71-17=54=9.6loại
a>=b
(ab-ba)=11-11=0
ds: ab=11
Do \(ab+1>3\)
Nên \(ab+1\) là số lẻ
Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn
Suy ra \(a=2\) hoặc \(b=2\)
+) Khi \(a=2\)
Suy ra: \(b=3\)
+) Khi \(b=2\)
Cũng xét tương tự bạn nhé!
Các cặp số \(\left(a;b\right)\)) là \(\left(3;2\right)\) và \(\left(2;3\right)\)
chỗ khi a = 2, nếu b chia 3 dư 2 => ab + 1 = 2b + 1 = 2.(3k + 2) + 1
= 6k + 4 + 1 = 6k + 5 chia hết cho 3 sai r`
a=2;b=5 thử lại vx đúng
Trong tập hợp số nguyên không có khái niệm hai số nguyên tố cùng nhau. Trong bài này phải nói trị tuyệt đối của chúng đôi một nguyên tố cùng nhau.
Vì a, b, c có vai trũ như nhau nên giả sử a ≤ b ≤ c khi đó
( Vì a là số nguyên tố )
Với a = 2 ta có
- Nếu b = 2 thì 4c < 2 + 4c thoả món với c là nguyên tố bất kỡ
- Nếu b = 3 thì 6c < 6b + 5c suy ra c < 6 vậy c = 3 hoặc c = 5
Vậy các cạp số (a, b, c) càn Tìm là (2, 2, p) ; (2, 3, 3 ) ; (2, 3, 5 ) và các hoán vị vủa chúng , với p là số nguyên tố .
Không thể có \(\left|c\right|>1\) vì c có ít nhất một ước nguyên tố \(p\ge2\)
Do đó p phải là ước của a hoặc b. Vô lý vì (a;c) = ( b;c) = 1; từ đó suy ra \(c\in\left\{-1;1\right\}\)
*TH1 : \(c=-1\)
\(\Rightarrow-\left(a+b\right)=ab\)
\(\Rightarrow ab-\left[-\left(a+b\right)\right]=0\)
\(\Rightarrow ab+a+b+1=0+1\)
\(\Rightarrow\left(ab+a\right)+\left(b+1\right)=1\)
\(\Rightarrow a\left(b+1\right)+\left(b+1\right)=1\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)=1\)
Do đó suy ra \(a+1=b+1=-1\) ( Chúng không thể bằng 1 vì nếu như vậy a=b=0 )
\(\Rightarrow a=b=-2\)
Do đó (a;b) = 2 \(\ne\)1 ( trái với giả thiết )
*TH2 : \(c=1\)
\(\Rightarrow a+b=ab\)
\(\Rightarrow ab-\left(a+b\right)+1=0+1=1\)
\(\Rightarrow ab-a-b+1=1\)
\(\Rightarrow\left(ab-a\right)-\left(b-1\right)=1\)
\(\Rightarrow a\left(b-1\right)-\left(b-1\right)=1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Rightarrow a-1=b-1=1\) ( chúng không thể bằng -1 vì như vậy thì a = b = 0 )
\(\Rightarrow a=b=2\)
\(\Rightarrow\left(a;b\right)=2\ne1\) (trái với giả thiết )
Do đó không tồn tại a, b, c thỏa mãn đề bài.