K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

tam giác ABC cân thì AB=AC sao AC/AB=4/3??

30 tháng 10 2021

mình ghi lộnhiha

4 tháng 3 2018

1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)

AD = AE (GT)

=> AB- AE= AC- AD

=> BE = CD

XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)

CÓ : BE = CD ( CMT)

\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)

BC LÀ CẠNH CHUNG

\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)

\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)

2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)

\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)

CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)

AE = AD (GT)

CE = BD ( pa)

\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)

CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)

BE = CD ( pa)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)

\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)

3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)

CHU VI CỦA TAM GIÁC ABC LÀ:

4,8+ 4,8+ 10 = 19,6 (CM)

KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM

CHÚC BN HỌC TỐT!!!!!
 

31 tháng 1 2019

1,Vì tam giác ABC cân ở A nên AB=AC. Mà AD=AE

Nên: BD=CE

2,

AH
Akai Haruma
Giáo viên
14 tháng 6 2023

Hình vẽ:

AH
Akai Haruma
Giáo viên
14 tháng 6 2023

Lời giải:
Áp dụng định lý Pitago:

$HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4$ (cm) 

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH.CH=AH^2$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{4,8^2}{6,4}=3,6$ (cm) 

$BC=BH+CH=3,6+6,4=10$ (cm) 

$AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-8^2}=6$ (cm) - Theo định lý Pitago

c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

21 tháng 3 2017

27 tháng 9 2021

Mọi người ơi giúp mình, mình đang cần gấp lắm

Xét ΔAHB vuông tại H có 

\(AH^2+HB^2=AB^2\)

hay AH=3,6(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay BC=7,5(cm)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=4,5(cm)