6 x 9=
6x 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{6x-9}=a\ge0\Rightarrow x=\frac{a^2+9}{6}\) pt trở thành:
\(\sqrt{\frac{a^2+9}{6}+a}+\sqrt{\frac{a^2+9}{6}-4a}=\sqrt{6}\)
\(\Leftrightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-24a+9}=6\)
\(\Leftrightarrow a+3+\sqrt{a^2-24a+9}=6\)
\(\Leftrightarrow\sqrt{a^2-24a+9}=3-a\) (\(a\le3\))
\(\Leftrightarrow a^2-24a+9=a^2-6a+9\)
\(\Rightarrow a=0\Rightarrow\sqrt{6x-9}=0\Rightarrow x=\frac{3}{2}\)
Do ban đầu ko đặt ĐKXĐ nên phải thay nghiệm vào để thử, thấy đúng, vậy pt có nghiệm duy nhất \(x=\frac{3}{2}\)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
ĐKXD \(x^2-6x+6\ge0\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(\Leftrightarrow\left(x^2-6x+6\right)-4\sqrt{x^2-6x+6}+3=0\)
Đặt \(a=\sqrt{x^2-6x+6}\left(a>0\right)\)
\(\Rightarrow a^2-4a+3=0\Leftrightarrow\left(a-3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{cases}}\)
\(+\sqrt{x^2-6x+6}=3\)
\(\Rightarrow x^2-6x+6=9\)
\(\Rightarrow\orbr{\begin{cases}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{cases}}\)
\(+\sqrt{x^2-6x+6}=1\)
\(\Rightarrow x^2-6x+6=1\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
b: Đặt \(x^2+5x+4=a\)
\(\Leftrightarrow a=5\sqrt{a+24}\)
\(\Leftrightarrow a^2=25a+600\)
\(\Leftrightarrow a^2-25a-600=0\)
\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)
\(\Leftrightarrow a=-15\)
hay S=∅
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a) x=8/9 - 1/6
x= 13/18
b) x=7/10+1/6
x= 13/15
c) 5/2-x=3/4
-x=3/4 - 5/2
-x=-7/4
x=7/4
6 x 9 = 54
6 x 4 = 24
~HTTTTTTTTT~
\(6\cdot9=54\)
\(6\cdot4=24\)