K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm A và sản phẩm B trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm A lãi 4 triệu đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất ra một tấn sản phẩm B lãi được 3 triệu đồng người ta sử dụng máy I trong 6 giờ, máy II trong 3 giờ, máy III trong 2...
Đọc tiếp

Một nhà máy sản xuất, sử dụng ba loại máy đặc chủng để sản xuất sản phẩm A và sản phẩm B trong một chu trình sản xuất. Để sản xuất một tấn sản phẩm A lãi 4 triệu đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất ra một tấn sản phẩm B lãi được 3 triệu đồng người ta sử dụng máy I trong 6 giờ, máy II trong 3 giờ, máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 36 giờ, máy hai hoạt động không quá 23 giờ và máy III hoạt động không quá 27 giờ. Hãy lập kế hoạch sản xuất cho nhà máy để tiền lãi được nhiều nhất

A. Sản xuất 9 tấn sản phẩm A và không sản xuất sản phẩm B 

B. Sản xuất 7 tấn sản phẩm A và 3 tấn sản phẩm B

 C. Sản xuất  10 3  tấn sản phẩm A và  49 9  tấn sản phẩm B 

D. Sản xuất 6 tấn sản phẩm B và không sản xuất sản phẩm A

1
23 tháng 9 2018

Chọn đáp án B

26 tháng 1 2018

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II sản xuất ra.

Như vậy tiền lãi có được là L = 3x + 5y (nghìn đồng).

Theo đề bài: Nhóm A cần 2x + 2y máy;

Nhóm B cần 0x + 2y máy;

Nhóm C cần 2x + 4y máy;

Vì số máy tối đa ở nhóm A là 10 máy, nhóm B là 4 máy, nhóm C là 12 máy nên x, y phải thỏa mãn hệ bất phương trình: Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Khi đó bài toán trở thành: trong các nghiệm của hệ bất phương trình (1) thì nghiệm (x = xo; y = yo) nào cho L = 3x + 5y lớn nhất.

Miền nghiệm của hệ bất phương trình (1) là ngũ giác ABCDE kể cả miền trong.

Giải bài 3 trang 99 SGK Đại Số 10 | Giải toán lớp 10

Ta có: L đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác ABCDE.

Tính giá trị của biểu thức L = 3x + 5y tại các đỉnh ta được:

Tại đỉnh A(0;2), L = 10

Tại đỉnh B(2; 2), L = 16

Tại đỉnh C(4; 1), L = 17

Tại đỉnh D(5; 0), L = 15

Tại đỉnh E(0; 0), L = 0.

Do đó, L = 3x + 5y lớn nhất là 17 (nghìn đồng) khi: x = 4; y = 1

Vậy để có tiền lãi cao nhất, cần sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm loại II.

24 tháng 9 2023

Tham khảo:

Gọi x, y lần lượt là số tấn sản phẩm X, Y mà xưởng cần sản xuất mỗi ngày.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-          Hiển nhiên \(x \ge 0,y \ge 0\)

-          Máy A làm việc không quá 12 giờ một ngày nên \(6x + 2y \le 12\)

-          Máy B làm việc không quá 8 giờ một ngày nên \(2x + 2y \le 8\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}6x + 2y \le 12\\2x + 2y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh \(O(0;0),A(0;4),\)\(B(1;3),\)\(C(2;0).\)

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: \(F = 10x + 8y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 10.0 + 8.0 = 0\)

Tại \(A(0;4):\)\(F = 10.0 + 8.4 = 32\)

Tại \(B(1;3),\)\(F = 10.1 + 8.3 = 34\)

Tại \(C(2;0).\)\(F = 10.2 + 8.0 = 20\)

F đạt giá trị lớn nhất bằng \(34\) tại \(B(1;3).\)

Vậy xưởng đó nên sản xuất 1 tấn sản phầm loại X và 3 tấn sản phầm loại Y để tổng số tiền lãi là lớn nhất.

15 tháng 4 2017

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II được nhà máy lập kế hoạch sản xuất. Khi đó số lãi nhà máy nhân được là P = 3x + 5y (nghìn đồng).

Các đại lượng x, y phải thỏa mãn các điều kiện sau:

(I)

(II)

Miền nghiệm của hệ bất phương trình (II) là đa giác OABCD (kể cả biên).

Biểu thức F = 3x + 5y đạt giá trị lớn nhất khi (x; y) là tọa độ đỉnh C.

(Từ 3x + 5y = 0 => y = Các đường thẳng qua các đỉnh của OABCD và song song với đường y = cát Oy tại điểm có tung độ lớn nhất là đường thẳng qua đỉnh C).

Phương trình hoành độ điểm C: 5 - x = <=> x = 4.

Suy ra tung độ điểm C là yc = 5 - 4 = 1. Tọa độ C(4; 1). Vậy trong các điều kiện cho phép của nhà máy, nếu sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm đơn vị loại II thì tổng số tiền lãi lớn nhất bằng:

Fc = 3.4 + 5.1 = 17 nghìn đồng.

24 tháng 6

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

6 tháng 9 2019

Bài 1: Giải bài toán bằng cách lập phương trình Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện, mỗi ngày tổ sản xuất được 55 sản phẩm. Do đó tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 12 sản phẩm . Hỏi theo kế hoạch, tổ phải sản xuất bao nhiêu sản phẩm?Bài 2: Giải bài toán bằng cách lập phương trình Một ô tô đi từ A đến B rồi quay về A ngay....
Đọc tiếp

Bài 1: Giải bài toán bằng cách lập phương trình Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện, mỗi ngày tổ sản xuất được 55 sản phẩm. Do đó tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 12 sản phẩm . Hỏi theo kế hoạch, tổ phải sản xuất bao nhiêu sản phẩm?
Bài 2: Giải bài toán bằng cách lập phương trình Một ô tô đi từ A đến B rồi quay về A ngay. Thời gian về nhiều hơn thời gian đi là 1 giờ.
Tính độ dài quãng đường AB. Biết vận tốc lúc đi là 60km/h và vận tốc lúc về là 40km/h.
Bài 3: Giải bài toán bằng cách lập phương trình Một người đi xe đạp đi từ A đến B, lúc đầu đi với vận tốc 10 km/h. Để kịp thời gian theo dự định trên đọan đường còn lại dài gấp rưỡi đoạn đường đầu người đó đi với vận tốc 15 km/h, sau 4 giờ người đó đi đến B. Tính quãng đường AB?


 

1

Bài 8:

Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)

Thời gian ô tô đi từ A đến B là: \(\dfrac{x}{60}\left(h\right)\)

Thời gian ô tô đi từ B về A là: \(\dfrac{x}{40}\left(h\right)\)

Theo đề, ta có phương trình: \(\dfrac{x}{40}-\dfrac{x}{60}=1\)

\(\Leftrightarrow\dfrac{3x}{120}-\dfrac{2x}{120}=\dfrac{120}{120}\)

Suy ra: x=120(thỏa ĐK)

Vậy: Độ dài quãng đường AB là 120km

14 tháng 3 2021

Gọi x,y lần lượt là sản phẩm mà tổ 1, tổ 2 sản xuất được theo kế hoạch (0<x,y<600)

 Theo kế hoạch hai tổ sản xuất được 600  sản phẩm, ta có phương trình: x+y=600(1)

 Thực tế: Tổ 1 sản xuất vượt mức 18%  tức là số sản phẩm là 118100x

  Tổ 2 sản xuất vượt mức 21%  tức là số sản phẩm là 121100y

Và cả hai tổ sản xuất được 720  sản phẩm nên ta có phương trình: 118100x+121100y=720(2)

Từ (1) và (2), ta có hệ phương trình:

{x+y=600118100x+121100y=720⇔{x=200y=400

 Vậy theo kế hoạch, tổ 1 và tổ 2 lần lượt sản xuất được 200 sản phẩm và 400 sản phẩm

1 tháng 6 2018

Gọi x (giờ) là thời gian DCSX 1 làm riêng để xong công việc

      y (giờ) là thời gian DCSX 2 làm riêng để xong công việc

Điều kiện : x,y > 12

Trong một giờ, DCSX 1 làm được là : 1/x (công việc)

Trong một giờ, DCSX 2 làm được là : 1/y (công việc)

Vì cả 2 DCSX của nhà máy làm chung đã hoàn thành công việc sau 12h nên ta có phương trình :

1/x + 1/y = 1/12 (1)

Vì nếu làm riêng thì DCSX 1 làm chậm hơn DCSX 2 là 7h để xong công việc nên ta có phương trình :

y - x = 7 (2)

Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\y-x=7\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{x+7}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x+7}{x\left(x+7\right)}+\frac{x}{x\left(x+7\right)}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{2x+7}{x^2+7x}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}12\left(2x+7\right)=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}24x+84=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2+7x-24x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-17x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\orbr{\begin{cases}x_1=21\left(nh\text{ậ}n\right)\\x_2=-4\left(l\text{oại}\right)\end{cases}}\\y=21+7=28\end{cases}}\)\(\hept{\begin{cases}x=21\\y=28\end{cases}}\left(tm\right)\)

Vậy DCSX 1 làm riêng thì sau 21h sẽ xong công việc

DCSX 2 làm riêng thì sau 28h sẽ xong công việc

2 tháng 6 2018

bạn làm sai rồi nhìn đầu bài đi

cảm ơn bạn