tinh M=1x2+2x3+3x4+...+2009x2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 1.2+2.3+3.4+...+2009.2010
=>3B=1.2.3+2.3.3+3.4.3+...+2009.2010.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+2009.2010.(2011-2008)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+2009.2010.2011-2008.2009.2010
=2009.2010.2011
=>B=\(\frac{2009.2010.2011}{3}=2706866330\)
ta có: 1x2+2x3+3x4+....+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+....n(n+1)
=(1^2+2^2+3^2+¡+n^2)+(1+2+3+....+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=[n(n+1)[(2n+1)+3]/6
thay n=2009=> B=\(\frac{2009.\left(2009+1\right).\left(2009.2+1\right)+3}{6}\)=2704847286
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=1+(\(\frac{-1}{2}\)+\(\frac{1}{2}\))+(\(\frac{-1}{3}\)+\(\frac{1}{3}\))+...+(\(\frac{-1}{2009}\)+\(\frac{1}{2009}\))-\(\frac{1}{2010}\)
=1+0+0+...+0-\(\frac{1}{2010}\)
=1-\(\frac{1}{2010}\)
=\(\frac{2010}{2010}\)-\(\frac{1}{2010}\)
=\(\frac{2009}{2010}\)
lớp 4 ghê nhỉ đã học bài này rùi tui lớp 6 mà mới học bài này
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee2
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3
=> A = 333300
Đặt S = 1 x 2 + 2 x 3 + ......... + 99 x100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ...... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ...... + 99 x 100 x 101 - 98 x 99 x 100
3S = ( 1 x 2 x 3 - 1 x 2 x 3) +.... + (98 x 99 x 100 - 98 x 99 x 100) + 99 x 100 x 101
3S = 99 x 100 x 101
S = 99 x 100 x 101 : 3 = 333300
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
= \(1-\frac{1}{2006}\)
= \(\frac{2005}{2006}\)
A = 1x2 + 2x3 + ... + 99x100
3A = 1x2x3 + 2x3x(4-1) + ... + 99x100x(101-98)
3A = 1x2x3 + 2x3x4 - 1x2x3 + ... + 99x100x101 - 98x99x100
3A = 99x100x101
3A = 999900
A = 333300