mik cần gấp câu c và câu d nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em đưa cả ngữ liệu và đề bài đầy đủ lên đây để thầy cô và các bạn trong cộng đồng có thể hỗ trợ nhé!
\(D=10\cdot\left(-2.5\right)\cdot0.4\cdot\left(-0.1\right)\)
\(=10\cdot1\cdot2.5\cdot0.4\)
=10
+ Tôm sông
Phần đầu - ngực
- Các chân hàm
- 2 đôi râu
- 5 đôi chân bò
Phần Bụng
- 5 đôi chân bụng
- Tấm lái
+ Nhện:
Phần đầu - ngực
- Đôi kìm
- Đôi chân xúc giác
- 4 đôi chân bò
Phần bụng
- Đôi khe thở
- 1 lỗ sinh dục
- Các núm tuyến tơ
Đều là lớp giác xác,
Khác là tôm ở sông, hồ, biển ;nhện ở các vùng cây rậm rạp
Thế thôi nhé :):):):)
A-B-B-B-A-C-D-D-A-A-B
Bn trả lời lần lượt nha !Chúc bn hc tốt nha !
~Akari~
Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?
Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)
Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)
Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)
Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)
Tam giác vuông \(IJO\): \(IJ^2=OI^2-JO^2\)
\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)
Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)
Do O là trung điểm BC nên \(IO\perp BC\)
\(\Rightarrow OI^2+OC^2=IC^2\)
Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)
Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)
\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)
Thế vào (3):
\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)
Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
b) Xét ΔABK vuông tại A và ΔIBK vuông tại I có
BK chung
\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)
Suy ra: KA=KI(hai cạnh tương ứng)
c) Ta có: ΔABK=ΔIBK(cmt)
nên BA=BI(Hai cạnh tương ứng)
Xét ΔBAI có BA=BI(cmt)
nên ΔBAI cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAI}=\widehat{BIA}\)(hai góc ở đáy)(1)
Ta có: \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)(tia AI nằm giữa hai tia AB,AC)
nên \(\widehat{BAI}+\widehat{KAI}=90^0\)(2)
Ta có: ΔDAI vuông tại D(gt)
nên \(\widehat{DIA}+\widehat{DAI}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BIA}+\widehat{DAI}=90^0\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{DAI}=\widehat{KAI}\)
hay AI là tia phân giác của \(\widehat{DAK}\)
\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)