Tìm nghiệm nguyên của phương trình:
1. 2xy-x+y = 3
2. 5x-3y = 2xy-11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn y theo x :
\(\left(2x+3\right)y=5x+11\)
Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:
\(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)
Để \(y\) \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)
\(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)
\(\implies\) \(2x+10\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3+7\) chia hết cho \(2x+3\)
\(\implies\) \(7\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3\) \(\in\) \(Ư\)(\(7\))={ \(1;-1;7;-7\) }
Ta có bảng sau:
\(2x+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(-1\) | \(-2\) | \(2\) | \(-5\) |
\(y\) | \(6\) | \(-1\) | \(3\) | \(2\) |
Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }
Biểu diễn y theo x :
\(\left(2x+3\right)y=5x+11\)
Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:
\(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)
Để \(y\) \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)
\(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)
\(\implies\) \(2x+10\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3+7\) chia hết cho \(2x+3\)
\(\implies\) \(7\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3\) \(\in\) \(Ư\)(\(7\))={ \(1;-1;7;-7\) }
Ta có bảng sau:
\(2x+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(-1\) | \(-2\) | \(2\) | \(-5\) |
\(y\) | \(6\) | \(-1\) | \(3\) | \(2\) |
Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }
phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)
pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1)
để pt có nghiệm x nguyên thì delta phải là số chính phương
xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x
-nghĩ vậy chả biết có đúng không <(")
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7