Câu 2: Cho hàm số (d): y = (2 – m)x-m+3 (1) a) Vẽ đồ thị (d) của hàm số khi m=1 b) Tìm giá trị của m để đồ thị hàm số (1) đồng biến. c) Goi A, B là giao điểm của (d) với Ox và Oy. Tìm m để Diện tích tam giác AOB = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số y=(m-1)x+3 đồng biến trên R thì m-1>0
=>m>1
Để hàm số y=(m-1)x+3 nghịch biến trên R thì m-1<0
=>m<1
b: Thay m=3 vào (d), ta được:
\(y=\left(3-1\right)x+3=2x+3\)
Vẽ đồ thị:
c: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-1=2\\3\ne-1\left(đúng\right)\end{matrix}\right.\)
=>m-1=2
=>m=3
d: Thay x=-2 và y=0 vào (d1), ta được:
\(-2\left(m-1\right)+3=0\)
=>-2(m-1)=-3
=>\(m-1=\dfrac{3}{2}\)
=>\(m=\dfrac{3}{2}+1=\dfrac{5}{2}\)
c: Thay x=1 và y=-4 vào (d), ta được:
\(m-1+m+3=-4\)
\(\Leftrightarrow2m=-6\)
hay m=-3
b: Để hai đường song song thì m-2=2
=>m=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)
SAOB=1
=>1/2*4/|m-2|=1
=>4/|m-2|=2
=>|m-2|=2
=>m=4 hoặc m=0
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
b: Để hàm số đồng biến thì 2-m>0
=>m<2
a: Khi m=1 thì (1): y=x+2
Tham khảo
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a) Hàm số đồng biến khi m - 2 > 0
<=> m > 2
Hàm số nghịch biến khi m - 2 < 0
<=> m < 2
b) Vì A(1;-2) thuộc đồ thị
=> -2 = 1 ( m - 2 ) + 3
<=> -2 = m - 2 + 3
<=> m = 1
Vậy m = 1
b: Để hàm số đồng biến thì 2-m>0
hay m<2