K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Cái Này bạn bấm máy tinh nha

Bạn Ghi Cái đề bài vào Xong bấm SHIFT  rồi  Bấm CALC rồi Bấm = 

Là Ra Nhé Nhớ Cho mình Nha

 

7 tháng 8 2020

ap dung he thuc vi-et tinh x1+x2, x1.x2 cung duoc dung khong

đúng rồi

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

Ta có : x2 - 2x - 3m2 = 0 

Tại m = 1 thì pt trở thành : 

x2 - 2x - 3.1= 0 

<=> x2 - 2x - 3 = 0 

<=> x2 - 3x + x - 3= 0 

<=> x(x - 3) + (x - 3) = 0 

<=> (x - 3)(x + 1) = 0 

<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

18 tháng 1 2022

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)

2 tháng 1 2022

  Ta có: 
I'=(1/2+(-1/2);1+3)=(0;4)                 => X^2 -(y-4)^2=3^2                    <=> x^2 - (y^2-8y+16)=9                <=> x^2 -y^2 +8y  -16-9=0.        <=> x^2 - y^2 +8y - 25 =0                

Chọn D

 

 

 

 

27 tháng 5 2016
http://123tailieu.net/tai-lieu-giao-trinh/de-da-gvg-huyen-quan-hoa.html
28 tháng 5 2016

ĐK đó để có 2 nghiệm dg còn 2 nghệm thì penta >= 0

NV
12 tháng 1 2024

\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2+4>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

- Với 

\(x_1^2-2x_2=7\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2-2x_2=7\)

\(\Leftrightarrow2\left(m-1\right)x_1-\left(2m-3\right)-2x_2=7\)

\(\Leftrightarrow2mx_1-2\left(x_1+x_2\right)=2m+4\)

\(\Leftrightarrow mx_1-2\left(m-1\right)=m+2\)

\(\Leftrightarrow mx_1=3m\)

- Với \(m=0\) thỏa mãn

- Với \(m\ne0\Rightarrow x_1=3\)

Thế vào \(x_1+x_2=2\left(m-1\right)\Rightarrow x_2=2m-5\)

Thế tiếp vào \(x_1x_2=2m-3\) \(\Rightarrow3\left(2m-5\right)=2m-3\)

\(\Rightarrow m=3\)

Vậy \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

10 tháng 12 2020

\(pt\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-4mx-4=0\left(1\right)\end{matrix}\right.\)

để pt có 3 nghiệm pb thì pt(1) phải có 2 nghiệm pb khác 1

+)xét th pt(1) có 1 nghiệm bằng 1

khi đó ta có \(1-4m-4=0\Leftrightarrow m=\dfrac{-3}{4}\)

suy ra để pt(1) phải có 2 nghiệm pb khác 1 thì \(m\ne\dfrac{-3}{4}\)

+)để pt(1) có 2 nghiệm pb thì ac<0\(\Leftrightarrow-4< 0\) (luôn đúng với mọi m)

vậy để pt có 3 nghiệm pb thì \(m\ne\dfrac{-3}{4}\)