\(\left\{{}\begin{matrix}x^2+2x+a\le0\\x^2-4x-6a\le0\end{matrix}\right.\) với giá trị nào của a thì hệ có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)
\(\Leftrightarrow m=\pm1\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)
Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)
d.
Hệ có nghiệm duy nhất khi:
TH1:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)
TH2:
\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)
\(\Leftrightarrow m=1\) (ktm)
Vậy \(m=1\)
e.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi:
\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
pt (1) có nghiệm\(-8< x< 1\)
pt (2) có nghiệm\(x>\dfrac{2}{a^2-3a+2}\) nếu a<1 hay a>2
\(x< \dfrac{2}{a^2-3a+2}\) nếu 1<a <2
pt \(\left(2\right)\)vô nghiệm nếu a=1 hay a=2
Để hệ bpt vô nghiệm:
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}\le-8\\\dfrac{2}{a^2-3a+2}\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}+8\le0\\\dfrac{2}{a^2-3a+2}-1\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2\left(2a-3\right)^2}{a^2-3a+2}\le0\\\dfrac{-a^2+3a}{a^2-3a+2}\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1< a< 2\\0\le a< 1< 2< a\le3\end{matrix}\right.\)
Xét \(x^2+7x-8\le0\Leftrightarrow-8\le x\le1\) hay \(D_1=\left[-8;1\right]\)
Xét \(f\left(x\right)=ax^2-\left(3a-2\right)x-2>0\) (1)
- Với \(a=0\Leftrightarrow x>1\) hệ vô nghiệm (thỏa mãn)
- Với \(a\ne0\) , \(\Delta=\left(3a-2\right)^2+8a=9a^2-4a+4=9\left(a-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)
Gọi 2 nghiệm của pt (1) là \(x_1;x_2\)
TH1: \(\left\{{}\begin{matrix}a>0\\x_1\le-8< 1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a.f\left(-8\right)\le0\\a.f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\left(88a-18\right)\le0\\a\left(a-3a+2-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0< a\le\dfrac{9}{44}\)
TH2: \(\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}x_1< x_2\le-8\\1\le x_1< x_2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}\left\{{}\begin{matrix}a.f\left(-8\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}< -8\end{matrix}\right.\\\left\{{}\begin{matrix}a.f\left(1\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}>1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Tự giải nốt nhé, nhìn mà thấy làm biếng luôn :D
Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)
Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm
Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)
TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn
TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb
Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử
\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)
\(\Leftrightarrow a=0\)
Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)