(x-2020)3+(x-2022)3 = (2x-4042)3
Giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)
\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
\(\dfrac{2^{4042}\cdot3^{2020}}{6^{2019}\cdot4^{1011}}=\dfrac{2^{4042}\cdot3^{2020}}{3^{2019}\cdot2^{2019}\cdot2^{2022}}\)
\(=3\cdot\dfrac{2^{2042}}{2^{4041}}=3\cdot2=6\)
Lời giải:
\(\frac{2022\times 2023-3}{2023\times 2021+2020}=\frac{2023\times (2021+1)-3}{2023\times 2021+2020}
\\
=\frac{2023\times 2021+2023-3}{2023\times 2021+2020}=\frac{2023\times 2021+2020}{2023\times 2021+2020}=1\)
Sửa: \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\le0\)
Mà \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\ge0\) với mọi x,y
Do đó \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{1}{18}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=6+18=24\)
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
Đặt x - 2021 = a
=> x - 2020 = a + 1
x - 2022 = a - 1
2x - 4042 = 2a
Thay các giá trị vào biểu thức ta có
\(\left(a+1\right)^3+\left(a-1\right)^3=\left(2a\right)^3\)
\(\Leftrightarrow a^3+3a^2+3a+1+a^3-3a^2+3a-1=8a^3\)
\(\Leftrightarrow6a=6a^3\)
\(\Leftrightarrow6a\left(a^2-1\right)=0\)
\(\Leftrightarrow a\left(a-1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\begin{cases}a=0\Rightarrow x=2021\\a=1\Rightarrow x=2022\\a=-1\Rightarrow x=2020\end{cases}\)
Vậy x = 2020 hoặc x = 2022 hoặc x = 2021