K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Đặt:5M=5(5100-599-598-...53-52-5)

      5M=5101-5100-599-598...-54-53-52-5

        M=       5100-599-598...-54-53-52-5

      4M=5101

          M=4/5(5100)

29 tháng 6 2023

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

29 tháng 6 2023

e đang cần gấp, có ai đến giúp e ko?

7 tháng 11 2023

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

8 tháng 11 2023

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

29 tháng 11 2023

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$

$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$

$25C-C=(5^3+5^{102})-(5+1)$

$24C=5^{102}-119$

$C=\frac{5^{102}-119}{24}$

27 tháng 7 2023

    

 

Bài 2: 

Ta có: (x-3)(x+4)>0

=>x>3 hoặc x<-4

Bài 3:

a: \(5S=5-5^2+...+5^{99}-5^{100}\)

\(\Leftrightarrow6S=1-5^{100}\)

hay \(S=\dfrac{1-5^{100}}{6}\)

26 tháng 8 2023

Bài 1:

   D     =      5  + 52 + 53+...+ 5100

5.D     =             52 + 53+...+5 100 + 5101

5D - D = 5101 - 5

4D       = 5101 - 5

  D      = \(\dfrac{5^{101}-5}{4}\)

26 tháng 8 2023

Bài 2:

So sánh 

a, 544 = (2.33)4 = 24.312  

    2112 = (3.7)12 = 312.712

Vì 24 < 712 nên 544 < 2112

b, 339 và 1121

    339   =   (313)3

   1121 = (117)3

     313 = (32)6.3 = 96.3 < 97 < 117 

Vậy 339  < 1121

    

 

26 tháng 8 2023

1) \(D=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)

\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)

\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)

2)

a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)

b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)

\(\Rightarrow3^{39}< 11^{21}\)

c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)

\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)

\(201^{60}>398^{45}\)

26 tháng 12 2023

1/

Gọi d là ước của n+3 và 2n+5 nên

\(n+3⋮d\Rightarrow2n+6⋮d\)

\(2n+5⋮d\)

\(\Rightarrow2n+6-\left(2n+5\right)=1⋮d\Rightarrow d=1\)

=> n+3 và 2n+5 nguyên tố cùng nhau

2/

\(5A=5+5^2+5^3+5^4+...+5^{100}\)

\(4A=5A-A=5^{100}-1\Rightarrow4A+1=5^{100}=\left(5^{50}\right)^2\) LÀ SỐ CHÍNH PHƯƠNG

3/

Tích của 2 số chẵn liên tiếp là

\(2n.\left(2n+2\right)=4n^2+4n=4n\left(n+1\right)\)

Ta có 

\(n\left(n+1\right)\) Là tích của 2 số tự nhiên liên tiếp và là số chẵn

\(\Rightarrow n\left(n+1\right)=2k\)

\(\Rightarrow4n\left(n+1\right)=4.2k=8k⋮8\)

15 tháng 7 2023

Bài 1 :

Gọi \(A=5+5^2+5^3+...+5^{98}+5^{99}\\ 5A=5^2+5^3+5^4+...+5^{99}+5^{100}\\ 5A-A=\left(5^2+5^3+5^4+...+5^{99}+5^{100}\right)-\left(5+5^2+5^3+...+5^{98}+5^{99}\right)\\ 4A=5^{100}-5\\ A=\dfrac{5^{100}-5}{4}\)

Bài 2:

\(\left(12x-4\right)\cdot8^{2022}=4\cdot8^{2023}\\ 12x-4=4\cdot8^{2023}:8^{2022}\\ 12x-4=4\cdot8\\ 12x-4=32\\ 12x=36\\ x=3\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2022

Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:

b.

$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$

$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$

$=2+24+(1+5)(5^2+5^4+...+5^{98}$

$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$

$\Rightarrow A$ chia $6$ dư $2$.