Cho góc nhọn xOY , lấy điểm A trên tia OX (điểm A khác điểm O ) và điểm B trên tia OY
sao cho OA=OB . Gọi M là trung điểm của AB .
a) Chứng minh: OAM= OBM.
b) Trên tia OM lấy điểm H sao cho OM=OH . Chứng minh HA=HB .
c) Qua H kẻ đường thẳng song song với AB cắt OX tại E và cắt OY tại . Chứng minh OH là
đường trung trực của EK .
d) Gọi giao điểm của AK và BE là N . Chứng minh ba điểm O, M, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM và ΔOBM có
OA=OB
OM chung
AM=BM
Do đó: ΔOAM=ΔOBM
Câu b đề sai rồi bạn
a) Xét tam giác OMA và tam giác OMB:
OM chung.
OA = OB (gt).
MA = MB (M là trung điểm của đoạn thẳng AB).
=> ∆ OMA = ∆ OMB (c - c - c).
b) Xét tam giác OAB:
OA = OB (gt).
=> Tam giác OAB cân tại O.
Mà OM là đường trung tuyến (M là trung điểm của đoạn thẳng AB).
=> OM là đường cao (Tính chất tam giác cân).
=> OM vuông góc với AB.
c) Xét tam giác HON vuông tại H và tam giác KON vuông tại K:
ON chung.
\(\widehat{HON}=\widehat{KON}\) (∆ OMA = ∆ OMB).
=> Tam giác HON = Tam giác KON (cạnh huyền - góc nhọn).
=> NH = NK (2 cạnh tương ứng).
d) Xét tam giác OHK:
OH = OK (Tam giác HON = Tam giác KON).
=> Tam giác OHK cân tại O.
Xét tam giác OHK cân tại O:
OP là trung tuyến (P là trung điểm của đoạn HK).
=> OP là phân giác góc O (Tính chất tam giác cân). (1)
Xét tam giác OAB cân tại O:
OM là trung tuyến (M là trung điểm của đoạn AB).
=> OM là phân giác góc O (Tính chất tam giác cân). (2).
=> Ba điểm O, M, P thẳng hàng.
b) Xét 2 tg AOM và tg BOM có
OA=OB GT
OM chung GT
AM=BM vì M là TĐ AB
Suy ra tg AOM=tg BOM (c.c.c)
Suy ra góc OMA=góc OMB
Do OMB+OMA=180 độ kề bù
Suy ra góc OMB=OMA=180:2=90độ
Do đó OM vuông với AB
Đầu tiên bạn vẽ hình đã.
a) Xét 2 tam giác AMN và BMO có:
AM=MB(M là tđ của AB)
Góc AMN=góc BMO(đối đỉnh)
OM=ON(GT)
Suy ra tg AMN=tg BMO
Suy ra AN=OB