K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

Xét tam giác ADC có EO // CD nên :

text   end text fraction numerator O E over denominator C D end fraction text    end text equals text    end text fraction numerator A O over denominator A C end fraction text     end text left parenthesis 1 right parenthesis (Hệ quả định lí ta- let).

Xét tam giác BDC có OF // CD nên:

fraction numerator O F over denominator C D end fraction text    end text equals text    end text fraction numerator B F over denominator B C end fraction text     end text left parenthesis 2 right parenthesis  ( hệ quả định lí Ta- let)

Xét tam giác ABC có OF // AB nên theo định lí  Ta – let :

fraction numerator A O over denominator A C end fraction text    end text equals text    end text fraction numerator B F over denominator B C end fraction text     end text left parenthesis 3 right parenthesis

Từ (1); (2); (3) suy ra: 

text ​ end text fraction numerator O E over denominator C D end fraction text    end text equals text    end text fraction numerator A O over denominator A C end fraction text    end text equals text    end text fraction numerator B F over denominator B C end fraction text    end text equals text   end text fraction numerator O F over denominator C D end fraction

rightwards double arrow O E equals text    end text O F (đpcm)

22 tháng 3 2023

 thanhkiu 

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD

=>OA/OC=OB/OD=AB/CD

=>OA*OD=OB*OC

b: OA/OC=AB/CD

=>OA/6=5/10=1/2

=>OA=3cm

Xet ΔADC có OE//DC

nên OE/DC=AO/AC

=>OE/10=3/(3+6)=3/9=1/3

=>OE=10/3cm

21 tháng 12 2023

loading... 

25 tháng 3 2022

-Sửa đề: F là giao của AC và BD.

EF cắt AB, CD lần lượt tại H,K.

\(\dfrac{AH}{BK}=\dfrac{AE}{BE}=\dfrac{AB}{DC}=\dfrac{BE}{CE}=\dfrac{BH}{CK}\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{AB}{DC}\left(1\right)\)

\(\dfrac{AH}{CK}=\dfrac{AF}{CF}=\dfrac{AB}{CD}=\dfrac{BF}{DF}=\dfrac{BH}{DK}\)

\(\Rightarrow\dfrac{AH}{CK}=\dfrac{BH}{DK}=\dfrac{AB}{CD}\left(2\right)\)

-Từ (1) và (2) \(\Rightarrow\dfrac{AH}{CK}=\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{BH}{DK}\)

\(\Rightarrow AH=BH;CK=DK\)

\(\Rightarrow\)H là trung điểm AB, K là trung điểm CD.

Sửa đề: Đường thẳng qua O song song với AB

Xét ΔAOB và ΔCOD có 

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//CD)

Do đó: ΔAOB\(\sim\)ΔCOD(g-g)

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{OA}{OB}=\dfrac{OC}{OD}=\dfrac{OA+OC}{OB+OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{OC}{OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{CO}{CA}=\dfrac{DO}{DB}\)(1)

Xét ΔDAB có 

M∈AD(gt)

O∈BD(gt)

MO//AB(gt)

Do đó:\(\dfrac{DO}{DB}=\dfrac{MO}{AB}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//AB(gt)

Do đó: \(\dfrac{CO}{CA}=\dfrac{ON}{AB}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{OM}{AB}=\dfrac{ON}{AB}\)

hay OM=ON(đpcm)

\(\Leftrightarrow OM+ON=MN=2\cdot ON\)
Xét ΔBCD có 

O∈BD(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{CD}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)(4)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{AB}=\dfrac{CN}{CB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{ON}{AB}+\dfrac{ON}{CD}=\dfrac{BN}{BC}+\dfrac{CN}{BC}=1\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{ON}=\dfrac{2}{2\cdot ON}=\dfrac{2}{MN}\)(đpcm)