Tìm x,y thộc Z thỏa mãn
2xy-x+4y=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + 3x - 2y = 11
<=> x(y+3) - (2y+6) = 5
<=> x(y+3)- 2(y+3) = 5
<=> (y+3)(x-2) = 5
Ta có bảng sau:
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Vậy các cặp (x;y) thỏa mãn là: (3;2);(1;-8);(7;-2);(-3;-4)
<=> |x+5| + |y-1| <=0
Mà |x+5| và |y-1| đều >=0 nên |x+5|+|y-1| >=0
=> |x+5|+|y-1| = 0 <=> x+5 = 0 và y-1 = 0
<=> x=-5 và y=1
Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)
Điều kiện bài toán trở thành :
\(a+1+b+2+c+3< 9\)
\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)
\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)
\(a+b+c< 3\)
\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)
Mặt khác, do aa không âm, ta luôn có:
\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)
\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)
\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)
Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)
\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)
Cộng vế với vế (1);(2);(3):
\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)
\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)
Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)
⇒x=...;y=...;z=...
a)x.y chứ ko phải x,y nhé bạn
x.y+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
=>(x-2).(y+3)=5
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Lời giải:
$6xy-4x+3y=5$
$\Rightarrow 2x(3y-2)+3y=5$
$\Rightarrow 2x(3y-2)+(3y-2)=3$
$\Rightarrow (3y-2)(2x+1)=3$
Với $x,y$ nguyên thì $2x+1, 3y-2$ nguyên. Mà tích của chúng bằng 3 nên ta xét các TH sau:
TH1: $2x+1=1, 3y-2=3\Rightarrow y=\frac{5}{3}$ (loại)
TH2: $2x+1=-1, 3y-2=-3\Rightarrow y=\frac{-1}{3}$ (loại)
TH3: $2x+1=3, 3y-2=1\Rightarrow x=1; y=1$
TH4: $2x+1=-3, 3y-2=-1\Rightarrow y=\frac{1}{3}$ (loại)
<=>(2x+4)y-x=11
=>(2x+4)y-x-11=0
=>2(x+2)=0
=>
2x=2*(-2) ( rút gọn 2)=>x=-2
thay x vào biểu thức rồi tự tìm tiếp