K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

x,yz:(x+y+z)=0,25=1/4

=>xyz/100=1/4.(x+y+z)

=>100x+10y+z/100=x/4+y/4+z/4=(x+Y+z)/4

=>4.(100x+10y+z)=x+y+z

=>400x+40y+z=x+y+z

=>...

ko chắc

28 tháng 1 2016

\(\Leftrightarrow x+y+z=z+y+x\)

\(\Rightarrow z+y+x=\frac{1}{2^2}\)

\(\Rightarrow z+y+x=0,25\)

\(\Rightarrow z+y+x-0,25=0\)

\(\Rightarrow\frac{4z+4y+4x-1}{4}=0\)

\(\Rightarrow4z+4y+4x-1=0\)

Tự làm tiếp nhé

28 tháng 1 2016

ê ,doraemon đâu
 

9 tháng 2 2020

ko vt lại đề 

(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019

=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019

=> (z-1)(xy-y-x+1)=2019

=> (z-1)(z-1)(y-1)=2019

vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1

nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}

(x-1)(y-1)(z-1)= 673.3.1=2019

=> x-1=673=>x=674

=>y-1=3=>y=4

=> z-1 =1=>z=2

Vậy x=674,y=4,z=2

20 tháng 4 2017

x = y = z = 0

20 tháng 4 2017

đangg còn cả x = y = 4 nữa 

quan trọng là cách làm kia

13 tháng 11 2021

Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)

Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)

\(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)

+) Trường hợp 1 : 

\(z=1\)thì \(xy=4\left(x+y+1\right)\Leftrightarrow\left(x-4\right)\left(y-4\right)=20\) 

Nên \(x-4\)và \(y-4\) là ước của 20 với \(x-4\ge y-4\ge-3\) ( do \(x\ge y\ge z=1)\)

x - 420105421
y - 412451020
x24149865
y56891424

Vậy ta được cặp \(\left(x;y\right)\)là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)

Xét tiếp trường hợp \(z=2;z=3\)

5 tháng 4 2015

Do x; y ; z > 0 nên xyz khác 0 => \(\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=1\Rightarrow\frac{1}{z}+\frac{1}{x}+\frac{1}{y}=1\Rightarrow\frac{1}{x}<1\Rightarrow x>1\)

Vì x<= y< = z nên \(\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)

=> 1 < = 3/x => x < = 3 mà x > 1 nên x = 2 hoặc 3

Nếu x = 2 => \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow\frac{1}{y}<\frac{1}{2}\Rightarrow y>2;\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{1}{2}\Rightarrow y\le4\)

mà y >2 => y = 3 hoặc 4 

y = 3 => z = 6;

y = 4 => z = 4

nếu x = 3 => \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\Rightarrow\frac{1}{y}<\frac{2}{3}\Rightarrow y>\frac{3}{2};\frac{1}{y}+\frac{1}{z}\le\frac{2}{y}\Rightarrow\frac{2}{y}\ge\frac{2}{3}\Rightarrow y\le3\)

theo đề bài x<= y nên y = 3 => z = 3

Vậy (x;y;z) = (3;3;3); (2;3;6);(2;4;4)

9 tháng 5 2019

x=1;y=9;z=8

Kiểm tra lại mà xem.