Chứng minh rằng nếu (a+3,b-2) = 1 thì (5a+7b+1,7a+10b+1)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì a<b=>2a<2b
=>2a+5<2b+5
b)Vì a<b=>-10a>-10b
=>2-10a>2-10b
c)Vì a<b=>7a<7b
=>7a-3<7b-3(1)
Vì -3<-1=>7b-3<7b-1(2)
Từ (1) và (2)=>đpcm
d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)
=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)
Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)
Từ (3) và (4)=> đpcm
a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5
b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)
c, Ta có: a < b \(\Rightarrow\)7a < 7b
Lại có: -3 < -1
\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1
d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)
Lại có: 3 > 1
\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)
gọi UCLN của (5a+3b ; 13a+8b)=d (d thuộc N)
\(\Rightarrow\left(5a+3b\right)⋮d\Rightarrow\left(65a+39b\right)⋮d\)
\(\Rightarrow\left(13a+8b\right)⋮d\Rightarrow\left(65a+40b\right)⋮d\)
\(\Rightarrow\left(65a+40b\right)-\left(65a+39b\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
mà (a ; b)=1. Vậy (a ; b)=(5a+3b ; 13a + 8b)
Vậy nếu (a;b)=1 thì (5a+3b ; 13a + 8b)=1 (đpcm)
Q(-3)=9x-3b+x ;Q(1)=a+b+c
lấy Q(-3)+Q(1)=10a-2b+2c=2(5a-b+c)=2.0=0(vì 5a-b-c=0)
mà 0=0=)Q(-3)+Q(1)< hoặc =0 =)Q(-3)và Q(1)đối nhau
mà 2 số đối nhau luôn có 1 số âm và 1 số dương
mà số âm. số dương bằng số âm mà số âm luôn bé hơn 0 nên =)Q(-3).Q(1) < hoặc = 0
con điên