\(\left(2x-3\right)^2+\left(3-5y\right)^4=0\)
giup nhe . cam on
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.2x - 3.6 - 4+4.2x - 2x-2.(-4) = 4 - 3+3.2x - 5-5.(-2x)
6x -18 -4 +8x -2x +8 = 4 -3 +6x -5 +10x
6x +8x -2x -18-4+8 = 4-3-5+6x+10x
12x-22 = -4+16x
12x-16x = -4+22
-4x = 18
x = 18: (-4)
x = -4,5
Mình không chắc là đúng đâu đấy, tại giải vội quá, nếu sai thì ming bạn thông cảm ^.^
Áp dụng BĐT Cosi:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}>=4\sqrt[4]{\frac{\left(a+2\right)\left(b+2\right)}{27.27.9}.\frac{a^4}{\left(a+2\right)\left(b+2\right)}}...\)
\(>=\frac{4}{9}a\)
Tương tự
\(=>VT>=\frac{4}{9}\left(a+b+c\right)-\frac{3}{9}-2\left(\frac{a+2}{9}+\frac{b+2}{9}+\frac{c+2}{9}\right)=\frac{1}{3}.\)
Dấu "="xảy ra khi a=b=c=1
Ta có:
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay vào B ta có:
\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)
a)
\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận
không có Max
b) giống vậy
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)
\(C\le40,5\) tự tìm cận
không có GTNN
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Lời giải:
Từ PT (2) suy ra $x=3y+1$
Từ PT (1) suy ra \(\left[{}\begin{matrix}2x+3y-2=0\\x-5y-3=0\end{matrix}\right.\)
Nếu $2x+3y-2=0$. Thay $x=3y+1$ vô thì:
$2(3y+1)+3y-2=0$
$\Leftrightarrow 9y=0\Leftrightarrow y=0$.
$x=3y+1=3.0+1=1$. HPT có nghiệm $(x,y)=(1,0)$
Nếu $x-5y-3=0$. Thay $x=3y+1$ vô thì:
$3y+1-5y-3=0$
$\Leftrightarrow -2y-2=0\Leftrightarrow y=-1$
$x=3(-1)+1=-2$. HPT có nghiệm $(x,y)=(-2; -1)$
Vì 0 chỉ có thể là tổng của 2 số 0 cộng lại
=> ( 2x -3 )2 =0 hoặc ( 3- 5y)4 =0
+) ( 2x -3 )2 = 0 => 2x -3 =0
2x = 0+3 =3
x = 3:2=1,5
+) ( 3 - 5y ) 4=0 => 3 - 5y = 0
5y = 3 - 0 = 3
y = 3:5= 0,6
Vậy x=1,5 và y=0,6
_HT_