chứng minh
8 : 2 = 6 : 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
S=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)
S=6+2^2(2+2^2)+2^4(2+2^2)+2^6(2+2^2)
S=6+2^2.6+2^4.6+2^6.6
S=6(1+2^2+2^4+2^6)=>S chia hết cho -6
S=2+22+23+24+25+26+27+28=(2+22)+22(2+22)+24(2+22)+26(2+22)
S=6+4x6+16x6+64x6
Vì 6 chia hết 6 nên 4x6 chia hết 6 ,16x6 chia hết 6, 64x6 chia hết 6
nên 6+4x6+16x6+64x6 chia hết 6
Vậy 2+22+23+24+25+26+27+28 chia hết cho 6
Vì : \(\frac{2+3}{4+6}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{2-3}{4-6}=\frac{-1}{-2}=\frac{1}{2}\)
\(\Rightarrow\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
tíc mình nha
\(\frac{2+3}{4+6}=\frac{1}{2}\)( vì \(\frac{2}{4}=\frac{3}{6}=\frac{1}{2}\) dựa vào t/c dãy tỉ số = nhau ) ( không tính)
\(\frac{2-3}{4-6}=\frac{1}{2}\)( vì \(\frac{2}{4}=\frac{3}{6}=\frac{1}{2}\) dựa vào t/c dãy tỉ số = nhau ) ( không tính)
=> \(\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
*)S=2+22+23+24+.....+28
Vì các số hạng của S chia hết chia hết cho 2
*) S=2+22+23+24+.....+28
=> S=(2+22)+(23+24)+.....+(27+28)
=> S=2(1+2)+23(1+2)+....+27(1+2)
=> S=2.3+23.3+.....+27.3
=> S=3(2+23+....+27)
=> S chia hết cho 3
Ta có 2 và 3 là 2 số nguyên tố cùng nhau => S chia hết cho 2.3=6
=> S chia hết cho -6 (đpcm)
Có 2+2^2+2^3+....+2^8
=(2+2^2)+(2^3+2^4)+.....+(2^7+2^8)
=(2+4)+2^2(2+2^2)+.....+2^6(2+2^2)
=6+2^2(2+4)+......+2^6(2+4)
=1.6+2^2.6+....+2^6.6
=6(1+2^2+....+2^6)
Vì 6 chia hết cho -6 ; 1+2^2+...+2^6 thuộc Z
=>6(1+2^2+....+2^6) chia hết cho -6
hay 2+2^2+2^3+....+2^8 chia hết cho -6
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
một nửa số 8 = 3
còn 6 : 2 chác chắn bằng 3
nó ko có thể bằng nhau theo toán học đc