Cho A=3n-5/n+4. Tim n thuoc Z de A co gia tri nguyen.
Giai day du ho minh nhe! Cam on moi nguoi nhieu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(3n-2,4n-3\right)\).
Suy ra \(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow4\left(3n-2\right)-3\left(4n-3\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(4n+1,6n+1\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow3\left(4n+1\right)-2\left(6n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)
b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất
\(\Rightarrow n+1\) bé nhất và n+1>0
\(\Rightarrow n+1=1\Rightarrow n=0\)
Nên GTNN của A=-1
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Ta có \(\frac{3n-5}{n+4}=\frac{\left(3n+12\right)-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên thì \(\frac{3n-5}{n+4}\)là số nguyên
Tương đương với \(3-\frac{17}{n+4}\) là số nguyên hay \(\frac{17}{n+4}\) là số nguyên
\(=>17⋮n+4=>n+4\inƯ\left(17\right)=\left\{17;1;-1;-17\right\}\)
\(=>n\in\left\{13;-3;-5;-21\right\}\)(th n thuôc Z)
\(3x-5=3x-5+12-12=3x+12-5-12=3x+12-17\)
đến đây mình dùng công thức \(ab+ac=a\left(b+c\right)\)
ta có \(3x+12-17=3.x+3.4-17=3\left(x+4\right)-17\)
thì đương nhiên \(\frac{3\left(x+4\right)-17}{x+4}=\frac{3\left(x+4\right)}{x+4}-\frac{17}{x+4}=3-\frac{17}{x+4}\)
xong rồi đấy bạn ( bạn ấy nhờ mình giải thích chỗ này nhé )