Cho tam giác cân ABC (AB=AC), đường phân giác góc B cắt AC tại D và cho biết AB=15cm, BC=10cm
a) Tính AD, DC
b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BE ⊥ BD nên BE là đường phân giác góc ngoài tại đỉnh B
Suy ra : ( t/chất đường phân giác)
Suy ra: ⇒ EC.BA= BC (EC + AC)
Suy ra: EC.BA - EC.BC = BC.AC ⇒EC (BA - BC) = BC.AC
Vậy
a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)
b, Ta có BD là pg, mà BD vuông BE
nên BE là pg ngoài tam giác ABC
\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
a) Theo đề bài ta có:
\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)
=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)
DC = AC - AD = 15 - 9 = 6 (cm)
Vậy AD = 9cm; DC = 6cm.
b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.
Áp dụng tính chất đường phân giác của góc ngoài ta có:
\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)
hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)
=> EC = 30 (cm)
Vậy EC = 30cm.
a.Ta có CDCD là phân giác góc C
→DA\DB=CA\CB=2→DA\DA+DB=2\2+1
→DA\AB=2\3
→DA=2\3AB=2\3AC=16(AB=AC)
→BD=AB−AD=8
b.Vì CE⊥CD,CD là phân giác trong của ΔABC
→CElà phân giác ngoài ΔABC
→EB\EA=CB\CA=1\2
→BE\EA−EB=1\2−1
→BE\AB=1
→BE=AB=AC=24
.Ta có CDCD là phân giác góc C
→DADB=CACB=2→DADA+DB=22+1→DADB=CACB=2→DADA+DB=22+1
→DAAB=23→DAAB=23
→DA=23AB=23AC=16(AB=AC)→DA=23AB=23AC=16(AB=AC)
→BD=AB−AD=8→BD=AB−AD=8
b.Vì CE⊥CD,CDCE⊥CD,CD là phân giác trong của ΔABCΔABC
→CE→CE là phân giác ngoài ΔABCΔABC
→EBEA=CBCA=12→EBEA=CBCA=12
→BEEA−EB=12−1→BEEA−EB=12−1
→BEAB=1→BEAB=1
→BE=AB=AC=24
....
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠∠(BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a: BC=35(cm)
Xét ΔABC có AD là đường phân giác
nên BD/AB=CD/AC
hay BD/21=CD/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó: BD=15(cm); CD=20(cm)
Xét ΔABC có ED//AB
nên ED/AB=CD/CB
=>ED/21=20/35=4/7
=>ED=12(cm)
moi hok lop 6
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm