Hưởng ứng phong tết trồng cây một trường THCS phát động lễ trồng cây . Biết tổng số cây trồng được 3 lớp 7A 7B 7C là 180 cây là số cây trồng được của mỗi lớp lần lượt tỉ lệ với 4;6;8 tính sỗ cây mà lớp 7A 7B 7C đã trồng được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây 7A,7B,7C lần lượt là \(a,b,c(a,b,c\in \mathbb{N^*})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{5+7+8}=\dfrac{120}{20}=6\\ \Rightarrow\left\{{}\begin{matrix}a=30\\b=42\\c=48\end{matrix}\right.\)
Vậy ...
Gọi số cây 3 lớp trồng được lần lượt là : a , b , c \(\left(a,b,c\inℕ^∗\right)\)
Theo bà ra , ta có : \(\hept{\begin{cases}\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\\c-a=60\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30\)
\(\Rightarrow b=30.5=150\left(TM\right)\)
Vậy số cây lớp 7B trồng được là 150 ( cây )
Gọi số học sinh lớp 7A là a
7B là b (a;b;c\(\inℕ^∗\))
7C là c
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)và c=a+60
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{4}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30\)
\(\Rightarrow\frac{b}{5}=30\)\(\Rightarrow b=150\)
Vậy số cây trồng được của lớp 7B là 150 cây.
Gọi số học sinh của mỗi lớp lần lượt là \(a,b,c\)( cây )
Ta có: \(a\div b\div c=5\div7\div8\)
\(\Rightarrow\)\(\frac{a}{5}=\frac{b}{7}=\frac{c}{8}\)và \(a+b+c=180\)( cây )
\(\frac{a}{5}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{5+7+8}=\frac{180}{20}=9\)
\(\Rightarrow\)\(\frac{a}{5}=9\Rightarrow a=9.5=45\)( cây )
\(\Rightarrow\)\(\frac{b}{7}=9\Rightarrow b=9.7=63\)( cây )
\(\Rightarrow\)\(\frac{c}{8}=9\Rightarrow c=9.8=72\)( cây )
Vậy lớp \(7a\)trồng đc \(45\)cây, lớp \(7b\)trồng đc \(63\)cây, lớp \(7c\)trồng đc \(72\)cây
Gọi số cây 3 lớp 7A, 7B, 7C trồng được lần lượt là a,b,c(a,b,c>0)
Theo bài ra ta có:\(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\\a+b+c=900\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{900}{12}=75\)
\(\dfrac{a}{3}=75\Rightarrow a=225\\ \dfrac{b}{4}=75\Rightarrow b=300\\ \dfrac{c}{5}=75\Rightarrow c=375\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{900}{12}=75\)
Do đó: a=225; b=300; c=375
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{900}{12}=75\\\Rightarrow \left\{{}\begin{matrix}a=3.75=225\\b=4.75=300\\c=5.75=375\end{matrix}\right.\\\)
\(\Rightarrow\text{ số cây trồng được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với 225;300;375}\)
Gọi số cây lớp 7A,7B,7C trồng lần lượt là a,b,c(cây)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{30}{2}=15\)
\(\Rightarrow\left\{{}\begin{matrix}a=15.3=45\\b=15.4=60\\c=15.5=75\end{matrix}\right.\)
Vậy....
Gọi số cây của lớp 7A; 7B; 7C lần lượt là x;y;z
Mà x; y; z lần lượt tỉ lệ với 3; 4; 5.
Theo đề bài, ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) và z - x = 30 (x; y; z ϵ N*; ≠ 0)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x}{5-3}=\dfrac{30}{2}=15\)
=> x = 15.3 = 45.
=> y = 15.4 = 60.
=> z = 15.5 = 75.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{30}{2}=15\)
Do đó: a=45; b=60; c=75
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây), b(cây),c(cây)
(Điều kiện: \(a\in Z^+;b\in Z^+;c\in Z^+\))
Số cây của lớp 7A,7B,7C lần lượt tỉ lệ với 6;4;5 nên ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}\)
Tổng số cây trồng được của 2 lớp 7A,7B nhiều hơn của lớp 7C là 50 cây nên ta có: a+b-c=50
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{50}{5}=10\)
=>a=60;b=40;c=50
Vậy: Lớp 7A trồng được 60 cây
Lớp 7B trồng được 40 cây
Lớp 7C trồng được 50 cây
Gọi số cây 7A,7B,7C trồng đc lần lượt là a,b,c(cây;a,b,c∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{a+b+c}{4+6+8}=\dfrac{180}{18}=10\\ \Rightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=80\end{matrix}\right.\)
Vậy ...
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là : a,b,c ( a,b,c thuộc N* )
Do số cây trồng được 3 lớp 7A,7B,7C tỉ lệ với 4,6,8 nên ta có :
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{a+b+c}{4+6+8}=\dfrac{180}{18}=10\) ( t/c dãy tỉ số bằng nhau )
=> a = 10 . 4 = 40 cây
b = 10 . 6 = 60 cây
c = 10 . 8 = 80 cây