Cho A=(-7)+(-7)2+.........+(-7)2012+(-7)2013
a) Tính tổng A
b) Chứng minh A chia hết 43
Mình đag cần câu b mong các bạn giúp mình!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
Câu 1 : (Bạn thông cảm hơi mờ chút )
\(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)
\(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43
Câu 3 :
*Điều kiện đủ :
Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9
*Điều kiện cần :
Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)
Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)
Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9 => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)
Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
a,Tính S
S=70+72+74+....+72018
72.S=72.(70+72+74+...+72018)
72.S=72+74+76+...+72020
Mà S=70+74+76+....+72018
=>72.S-S=72020-1
Câu B để mk suy nghĩ đã
Phần b) :
72020 - 1 = (72)1010 - 1 = 491010 - 1
Theo tính chât tìm sô tận cùng thì số có tận cùng là 9 và số mũ chẵn
=> Số tận cùng của nó sẽ là 1
Với số tận cùng = 1 mà trừ cho 1 = . . .1 - 1 = . . .0
Mà số chia hết cho 5 có số tận cùng = 0 hoặc 5
=> S chia hết cho 5
P/s : Mk chỉ dựa vào câu a của bạn vì mk ko tìm đc đáp án
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
moi hok lop 6