tìm x biết : ( x - 2 ) . ( x - 3 ) - ( x - 1 )2 = -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.x-\dfrac{2}{3}\times\left(x+9\right)=1\)
\(x-\dfrac{2}{3}\times x-6=1\)
\(x\times\left(1-\dfrac{2}{3}\right)=7\)
\(x\times\dfrac{1}{3}=7\)
\(x=21\)
\(2.x-\dfrac{11}{15}=\dfrac{3+x}{5}\)
\(\dfrac{15x}{15}-\dfrac{11}{15}=\dfrac{9+3x}{15}\)
\(15x-11=9+3x\)
\(12x=20\)
\(x=\dfrac{5}{3}\)
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(\Leftrightarrow3x-6+4x-4=25\)
\(\Leftrightarrow7x=35\)
\(\Leftrightarrow x=5\)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d. (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1
<=> x3 - 9 + (x2 + 2x)(2 - x) = 1
<=> x3 - 9 + 2x2 - x3 + 4x - 2x2 = 1
<=> 4x = 10
<=> x = \(\dfrac{10}{4}=\dfrac{5}{2}\)
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
\(<=> x^3-27-x(x^2-4)=1\)
\(<=> x^3-27-x^3-4x=1<=>-4x=28<=> x=-7\)
=> ptrình có tập nghiệm S={-7}
e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19
\(<=> x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-6(x^2-2x+1)+19=0\)
\(<=>x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(<=>12x=15<=>x=12/15 \)
=> ptrình có tập nghiệm S={12/15}
Answer:
\(\left(x-2\right).\left(x-3\right)-\left(x-1\right)^2=-1\)
\(\Rightarrow x^2-3x-2x+6-\left(x^2-2x+1\right)=-1\)
\(\Rightarrow x^2-5x+6-x^2+2x-1=-1\)
\(\Rightarrow-3x+5=-1\)
\(\Rightarrow-3x=-1-5\)
\(\Rightarrow x=2\)
x^2 - 2x -3x + 6 - x^2 + 2x - 1 + 1 = 0
-3x+6=0
x=-2