K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

iải

 

q3−1=(q−1)(q2+q+1).

Vì (q−1,q2+q+1)=1 nên ta xét hai trường hợp:

 

1) q−1⋮p

Kết hợp với điều kiện đầu đề bài, ta có (p−1)(q−1)⋮pq

⇒pq−p−q+1⩾pq

⇒p+q⩽1 (vô lí)

 Loại trường hợp này

 

Trường hợp 2: q2+q+1⋮p

Kết hợp với điều kiện đầu của đề bài, ta có q2+q+1−p⋮pq

Nên 

4 tháng 8 2020

Bài làm:

Ta có: Vì p,q là 2 số nguyên tố lớn hơn 3

=> p,q đều là 2 số lẻ

=> p + q chẵn với mọi số nguyên tố p,q

=> p + q chia hết cho 2

=> đpcm

4 tháng 8 2020

Cho mk xin lỗi mk nhầm đề xíu p+q chia hết cho 12 chứ ko pk 2 ạ.

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

7 tháng 6 2017

Giả sử: n+1=a2

2n+1=b2

Vì 2n+1 lẻ

=> b2:8 dư 1

=> 2n \(⋮\)8

=> n chẵn

=> a2:8 dư 1

=> n

7 tháng 6 2017

GS: n+1= a2

2n+1=b2

=>2n chia hết cho 8

=> n chẵn

=> a2 chia 8 dư 1

=> n chia hết cho 8

a2+b2=3n+2

Vì số chính phương chia 3 dư 0 hoặc 1

Mà 3n+2 chia 3 dư 2

=> b2 và a2 chia 3 dư 1

=> n chia hết cho 3

Mà [3,8]=1=> n chia hết cho 24

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)