Tìm tất cả các giá trị của m để phương trình sau vô nghiệm: \(\frac{m+3}{x+1}-\frac{5-3m}{x-2}=\frac{mx+3}{x^2-x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m=-1
BPT sẽ là:
-2(-1-1)x-3-3>0
=>4x-6>0
=>x>6/4
=>Loại
TH2: m<>-1
Δ=(2m-2)^2-4(m+1)(3m-3)
=4m^2-8m+4-4(3m^2-3)
=4m^2-8m+4-12m^2+12
=-8m^2-8m+16
Để BPT vô nghiệm thì -8m^2-8m+16<=0 và m+1<0
=>m^2+m-2>=0 và m<-1
=>(m+2)(m-1)>=0 và m<-1
=>(m>=1 hoặc m<=-2) và m<-1
=>m<=-2
ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)
Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1
th1: (1) có nghiệm kép
\(\Rightarrow m=\frac{3}{2}\)
th2: (1) có 1 nghiệm x=1
\(\Rightarrow m=-3\)
Cứ xét 2 trường hợp ra rồi biện luận thôi ; lưu ý điều kiện x khác -1
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2