K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2021

Lời giải:

BPT \(\Leftrightarrow \left\{\begin{matrix} x+3\geq 0\\ (x^2+4x+3)^2\leq (x+3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2(x+3)^2\leq (x+3)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2\leq 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ x(x+2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ -2\leq x\leq 0\end{matrix}\right.\)

\(\Rightarrow -2\leq x\leq 0\)

19 tháng 1 2022

a, \(\left(x-3\right)\left(x^2+x-20\right)\ge0\)

\(\Leftrightarrow\) \(\left(x-3\right)\left(x-4\right)\left(x+5\right)\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x+5=0\Leftrightarrow x=-5\)

+) Lập trục xét dấu f(x) (Bạn tự kẻ trục nha)

\(\Rightarrow\) Bpt có tập nghiệm S = \(\left[-5;3\right]\cup\) [4; \(+\infty\))

b, \(\dfrac{x^2-4x-5}{2x+4}\ge0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-5\right)\left(x+1\right)}{2x+4}\ge0\)

+) \(x-5=0\Leftrightarrow x=5\)\(x+1=0\Leftrightarrow x=-1\)\(2x+4=0\Leftrightarrow x=-2\)

+) Lập trục xét dấu f(x) 

\(\Rightarrow\) Bpt có tập nghiệm S = (-2; -1] \(\cup\) [5; \(+\infty\))

c, \(\dfrac{-1}{x^2-6x+8}\le1\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)^2}{\left(x-4\right)\left(x-2\right)}\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x-2=0\Leftrightarrow x=2\)

+) Lập trục xét dấu f(x)

\(\Rightarrow\) Bpt có tập nghiệm S = (\(-\infty\); 2) \(\cup\) (4; \(+\infty\))

Chúc bn học tốt!

22 tháng 10 2018

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

Bài 1: 

a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)

\(\Leftrightarrow6-8x-10+2x-5=0\)

\(\Leftrightarrow-6x+11=0\)

\(\Leftrightarrow-6x=-11\)

hay \(x=\dfrac{11}{6}\)

b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)

\(\Leftrightarrow6-12x-11+3x-1=0\)

\(\Leftrightarrow-9x-6=0\)

\(\Leftrightarrow-9x=6\)

hay \(x=-\dfrac{2}{3}\)

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

13 tháng 4 2023

a) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)-4x\left(x+1\right)\le20\)

\(\Leftrightarrow x^4+4x^2+4-x^4+16-4x^2-4x\le20\)

\(\Leftrightarrow\left(x^4-x^4\right)+\left(4x^2-4x^2\right)-4x+4+16\le20\)

\(\Leftrightarrow-4x+20\le20\)

\(\Leftrightarrow-4x\le20-20\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow-4x:-4\ge0:-4\)

\(\Leftrightarrow x\ge0\)

Vậy nghiệm của bất phương trình là: \(x\ge0\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)\ge15\)

\(\Leftrightarrow x^3+8-x^3-2x\ge15\)

\(\Leftrightarrow\left(x^3-x^3\right)+8-2x\ge15\)

\(\Leftrightarrow8-2x\ge15\)

\(\Leftrightarrow-2x\ge15-8\)

\(\Leftrightarrow-2x\ge7\)

\(\Leftrightarrow-2x:-2\le7:-2\)

\(\Leftrightarrow x\le-\dfrac{7}{2}\)

Vậy nghiệm của bất phương trình là \(x\le-\dfrac{7}{2}\)

a: =>x^4+4x^2+4-x^4+16-4x^2-4x<=20

=>-4x+20<=20

=>-4x<=0

=>x>=0

b: =>x^3+8-x^3-2x>=15

=>-2x>=7

=>x<=-7/2

8 tháng 8 2019

(x + 2)(3 – 4x) =  x 2  + 4x + 4

⇔ (x + 2)(3 – 4x) –  x + 2 2  = 0

⇔ (x + 2)(3 – 4x) – (x + 2)(x + 2) = 0

⇔ (x + 2)[(3 – 4x) – (x + 2)] = 0

⇔ (x + 2)(3 – 4x – x – 2) = 0

⇔ (x + 2)(1 – 5x) = 0 ⇔ x + 2 = 0 hoặc 1 – 5x = 0

      x + 2 = 0 ⇔ x = - 2

      1 – 5x = 0 ⇔ x = 0,2

Vậy phương trình có nghiệm x = - 2 hoặc x = 0,2