K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Ghi đề có j dok sai sai

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của \(\widehat{EAF}\)

nên AEDF là hình thoi

5 tháng 12 2023

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của góc EAF

=))AEDF là hình thoi

16 tháng 11 2021

giải cho em với với ạ , giải rõ ra ạ :))

 

16 tháng 11 2021

 

 

 

 

13 tháng 11 2021

a: Xét tứ giác AEDF có

AE//DF

DE//AF

Do đó: AEDF là hình bình hành

mà \(\widehat{DAE}=90^0\)

nên AEDF là hình chữ nhật

13 tháng 11 2021

a, Vì DE//AB nên DE⊥AC và DF//AC nên DF⊥AB

Vì \(\widehat{AED}=\widehat{AFD}=\widehat{EAF}=90^0\) nên AEDF là hcn

b,Vì E là trung điểm MD và AC nên AMCD là hbh

Mà AC⊥DE nên AMCD là hthoi

c, Vì D là trung điểm BC và AK và \(\widehat{BAC}=90^0\) nên ABKC là hcn

Để ABKC là hv thì AB=AC hay tam giác ABC vuông cân tại A

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

$DF\parallel AE, DE\parallel AF$ nên $AEDF$ là hình bình hành

$P_{AEDF}=AE+DF+DE+AF$

Lại có:

$DF\parallel AC$ nên áp dụng định lý Talet:

$\frac{DF}{AC}=\frac{BF}{AB}$. Mà $AB=AC$ nên $DF=BF$

$DE\parallel AB$ nên áp dụng định lý Talet:

$\frac{CE}{AC}=\frac{DE}{AB}$ mà $AB=AC$ nên $CE=DE$

Do đó:

$P_{AEDF}=AE+BF+CE+AF=(AE+CE)+(BF+AF)=AC+AB=4+4=8$ (cm)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

16 tháng 2 2022

-Ta có: DE//AB, DF//AC (gt).

\(\Rightarrow\) AEDF là hình bình hành mà AD là tia phân giác của \(\widehat{BAC}\) (gt).

\(\Rightarrow\) AEDF là hình thoi.

-Xét △ABC có: DF//AC (gt).

\(\Rightarrow\dfrac{BF}{AB}=\dfrac{DF}{AC}\) (định lí Ta-let).

\(\Rightarrow1-\dfrac{DF}{AB}=\dfrac{DF}{AC}\)

\(\Rightarrow\dfrac{DF}{AB}+\dfrac{DF}{AC}=1\)

\(\Rightarrow DF.\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)=1\)

\(\Rightarrow DF.\left(\dfrac{1}{3}+\dfrac{1}{6}\right)=1\)

\(\Rightarrow DF.\dfrac{1}{2}=1\)

\(\Rightarrow DF=2\) (cm).

\(\Rightarrow P_{AEDF}=4.DF=4.2=8\left(cm\right)\) (do AEDF là hình thoi).