Bài 1: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại D.
Chứng minh rằng.
a). DB = DC b) AD vuông góc với BC
Mn viết giả thiết kết luận của bài này ạ
Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
góc BAD=goc CAD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>BD=CD
c: ΔACB cân tại A
mà ADlà trung tuyến
nên AD vuông góc BC
a) Xét ΔABD và ΔACD có
AB=AC(gt)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
⇒DB=DC(hai cạnh tương ứng)
b) Vì AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Vì DB=DC(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
hay AD⊥BC(đpcm)
GT: Tam giác ABC: AB = AC.
AD là phân giác góc A.
KL: a) DB = DC
b) AD vuông góc với BC.
a) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AD là phân giác góc A (gt).
=> AD là đường trung tuyến (Tính chất các đường trong tam giác cân).
=> D là trung điểm của BC.
=> DB = DC.
b) Xét tam giác ABC cân tại A: AD là phân giác góc A (gt).
=> AD là đường cao (Tính chất các đường trong tam giác cân).
=> AD vuông góc với BC.
Đúng cái mik cần r, cảm ơn nhiều