K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$

Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$

$\Rightarrow x^2+1\vdots d; x+1\vdots d$

$\Rightarrow x(x+1)-(x^2+1)\vdots d$

$\Rightarrow x-1\vdots d$

$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)

$\Rightarrow d=1$

Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.

Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$

$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$

$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$

$\Rightarrow a=b=1$

$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$

a Khi m=1 thì (1) sẽ là x^2+1=0

=>x thuộc rỗng

b: Thay x=1 vào (1),ta được:

1^2-2(m-1)+m^2=0

=>m^2+1-2m+2=0

=>m^2-2m+3=0

=>PTVN

c: Thay x=-3 vào pt, ta được:

(-3)^2-2*(m-1)*(-3)+m^2=0

=>m^2+9+6(m-1)=0

=>m^2+6m+3=0

=>\(m=-3\pm\sqrt{6}\)

23 tháng 6 2018

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

1 tháng 9 2018

khó thế :(

24 tháng 9 2018

phắc cừn sít 

a: Khi m=-3 thì (1): x^2-(-x)-2=0

=>x^2+x-2=0

=>x=-2 hoặc x=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có 2 nghiệm