Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
S1=5+5^2+5^3+...+5^2004 chia hết cho 6;31;156
=> S1 = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 52003 + 52004 )
=> S1 = 5.( 1 + 5 ) + 53.( 1 + 5 ) + .... + 52003.( 1 + 5 )
=> S1 = 5.6 + 53.6 + ....+ 52003.6
=> S1 = 6.( 5 + 53 + ... + 22003 )
Vì 6 ⋮ 6 => S1 ⋮ 6 ( đpcm )
=> S1 = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 52 ) + 54.( 1 + 5 + 52 ) + .... + 52002.( 1 + 5 + 52 )
=> S1 = 5.31 + 54.31 + .... + 52002.31
=> S1 = 31.( 5 + 54 + ... + 52002 )
Vì 31 ⋮ 31 => S1 ⋮ 31 ( đpcm )
=> S1 = ( 5 + 52 + 53 + 54 ) + ( 55 + 56 + 57 + 58 ) + ... + ( 52001 + 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 5.5 + 53 ) + 55.( 1 + 5 + 5.5 + 53 ) + ... + 52001.( 1 + 5 + 5.5 + 53 )
=> S1 = 5.156 + 55 .156 + ... + 52001.156
=>S1 = 156.( 5 + 55 + ... + 52001 )
Vì 156 ⋮ 156 nên S1 ⋮ 156 ( đpcm )
viet sai thi bai nay cung chi dang diem khong ma thoi nhin lai truoc khi bot
=> S1 = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 52003 + 52004 )
=> S1 = 5.( 1 + 5 ) + 53.( 1 + 5 ) + .... + 52003.( 1 + 5 )
=> S1 = 5.6 + 53.6 + ....+ 52003.6
=> S1 = 6.( 5 + 53 + ... + 22003 )
Vì 6 ⋮ 6 => S1 ⋮ 6 ( đpcm )
=> S1 = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 52 ) + 54.( 1 + 5 + 52 ) + .... + 52002.( 1 + 5 + 52 )
=> S1 = 5.31 + 54.31 + .... + 52002.31
=> S1 = 31.( 5 + 54 + ... + 52002 )
Vì 31 ⋮ 31 => S1 ⋮ 31 ( đpcm )
=> S1 = ( 5 + 52 + 53 + 54 ) + ( 55 + 56 + 57 + 58 ) + ... + ( 52001 + 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 5.5 + 53 ) + 55.( 1 + 5 + 5.5 + 53 ) + ... + 52001.( 1 + 5 + 5.5 + 53 )
=> S1 = 5.156 + 55 .156 + ... + 52001.156
=>S1 = 156.( 5 + 55 + ... + 52001 )
Vì 156 ⋮ 156 nên S1 ⋮ 156 ( đpcm )
viet sai thi bai nay cung chi dang diem khong ma thoi nhin lai truoc khi bot