K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

m.n giúp mk với

 

a: Xét ΔMAE và ΔMBE có 

MA=MB

\(\widehat{AME}=\widehat{BME}\)

ME chung

Do đó: ΔMAE=ΔMBE

b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có

ME chung

\(\widehat{HME}=\widehat{KME}\)

Do đó:ΔMHE=ΔMKE

Suy ra: EH=EK

c: Ta có: ΔMAB cân tại M

mà ME là đường trung tuyến

nên ME là đường cao

=>ΔEBI vuông tại E

28 tháng 2 2022

em cảm ơn ạ

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)

1 tháng 5 2015

1Tại sao lại B=2D,mà chưa hề có điểm B trong đề

2aDo tam giác ABC cân đỉnh A=>góc ABC=góc ACB

=>góc ABM=góc ACN(góc ABM+góc ABC=góc ACN+GÓC ACB)

2bTa có:góc ABM=góc ACN(CMT).

Xét tam giác ABM và tam giác ACN.Bạn tự chứng minh có bằng nhau(c.g.c)

=>AM=AN=>AMN là tam giác cân

3aDo tam giác ABC cân=>góc ABC=góc ACB

Xét hai tam giác vuông HBD và KCE(Cạnh huyền-Góc nhọn).Bạn tự chứng minh.=>HB=CK

3bDo tam giác ABC cân=>góc ABC=góc ACB=>góc ABH=góc ACK

Bạn tự chứng minh hai tam giác AHB và AKC bằng nhau(c.g.c).Nhớ phải sử dung HB=CK

3cTôi không hiểu đề

27 tháng 7 2017

~`!@#$%^&*()_-+=|\{[}]''":;>.<,?/

tớ chịu đầu hàng ?!

*_*   !   soryyy

a) tam giác ABC cân tại A nên hai góc ABC= ACB

Ta có: góc ABM= 180 độ - góc ABC ( kề bù )

           góc ACN= 180 độ - ACB ( kề bù )

Vậy góc ABM= góc ACN

Xét tam giác ABM và tg ACN có:

AB=AC ( tg ABC cân tại A )

góc ABM= góc ACN ( cmt )

BM=CN(gt)

=> tg ABM= tg ACN ( c-g-c)

=> AM=AN( 2 cạnh tương ứng )

=> tg AMN cân tại A

b) Vì tg AMN cân tại A nên góc AMN= góc ANM

Xét tg HBM và tg KCN có:

góc MHB= góc NKC( = 90 độ )

BM=CN ( gt)

góc AMN= góc ANM ( tg AMN cân tại A)

=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )

=> BH= CK ( 2 cạnh tương ứng )

c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )

Lại có: HM+HA= AM; KN+KA= AN

Vì AM= AN ( tg AMN cân tại A )

     HM= HN                                   

=> AH= AK

d) tg ABM = tg CKN => góc HBM = góc KCN

góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )

=> tg OBC cân tại O

e) Khi góc BAc = 60 độ => tg ABC đều

=> BM = AB 

=> tg ABM cân tại B

Ta có : góc AMB = 1212 . ABC = 12.6012.60 = 30 độ

góc A= 180 độ - 30 độ - 30 độ = 120 độ

góc KCN = góc BCO = 60 độ

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(C-g-c)

Suy ra: AM=AN(Hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK(2 cạnh tương ứng)

c) ta có : AM=AN  (theo a) 

               HM=KN (tam giác MHB=tam giác NKC)

AM = AH+HM

AN= AK+ KN 

=> AH= AK

d) tam giác MHB=tam giác NKC(theo b) 

=> góc HBM=góc KCN(2 góc tương ứng)

góc HBM=góc OBC(đối đỉnh)

góc KCN=góc OCB(đối đỉnh)

=> góc OBC=góc OCB

=> tam giác OBC cân ở O

e) tam giác ABC có AB=AC ; góc BAC=60độ 

=> tam giác ABC đều 

=> AB=AC=BC

mà BC=BM(gt)

=> BM=AB

=>tam giác ABM cân ở B

góc ABC + góc ABM=180độ (kề bù)

=> góc ABM =180độ - góc ABC

                     =180độ-60độ

                     =120độ

tam giác ABC cân ở B 

=> góc BAM=góc BMA =(180độ-góc ABM) / 2=1800−12002=6002=3001800−12002=6002=300

vậy góc AMN=30độ

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp