Chứng minh 2139+3921 chia hết cho 180
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
|
Áp dụng tính chất chia hết của một tổng ta có: 45 ⋮ 9 99 ⋮ 9 180 ⋮ 9 ⇒ ( 45 + 99 + 180 ) ⋮ 9 = > D ⋮ 9 |
Câu trả lời hay nhất: Sửa lại đề : A = 1494.1495.1496
Giải :
Ta có :
a)1494 chia hết cho 9; 1495 chia hết cho 5; 1496 chia hết cho 4 nên
...A=1494.1495.1496 chia hết cho 9.5.4=180
b)1494 chia hết cho 9; 1495 chia hết cho 5; 1496 chia hết cho 11 nên
...A=1494.1495.1496 chia hết cho 9.5.11=495.
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
2155555555555555555555555
Ta có:
\(21^{39}+39^{21}=\left(21^{39}-1\right)+\left(39^{21}+1\right)\)
Vì \(21^{39}-1=20\left(21^{38}+21^{37}+...+1\right)\) chia hết cho \(20\) và \(39^{21}+1=40\left(39^{20}-39^{19}+...+1\right)\) chia hết cho \(20\)
Do đó, \(\left(21^{39}-1\right)+\left(39^{21}+1\right)\) chia hết cho \(20\) hay \(21^{39}+39^{21}\) chia hết cho \(20\) \(\left(\text{*}\right)\)
Mặt khác, ta cũng có \(21^{39}+39^{21}=\left(21^{39}-3^{39}\right)+\left(39^{21}-3^{21}\right)+\left(3^{39}+3^{21}\right)\)
Do \(21^{39}-3^{39}=18\left(21^{38}+...+3^{38}\right)\) chia hết cho \(9\) \(\left(1\right)\)
\(39^{21}-3^{21}=36\left(39^{20}+...+3^{20}\right)\) chia hết cho \(9\) \(\left(2\right)\)
và \(3^{39}+3^{21}=3^{21}\left(3^{18}+1\right)=3\left(3^2\right)^{10}\left(3^{18}+1\right)\) chia hết cho \(9\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , suy ra \(21^{39}+39^{21}\) chia hết cho \(9\) \(\left(\text{*}\text{*}\right)\)
Lại có: \(\left(20;9\right)=1\) \(\left(\text{*}\text{*}\text{*}\right)\)
Từ \(\left(\text{*}\right);\) \(\left(\text{*}\text{*}\right)\) và \(\left(\text{*}\text{*}\text{*}\right)\) suy ra \(21^{39}+39^{21}\) chia hết cho \(20.9=180\)