K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

V
16 tháng 12 2018

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

16 tháng 12 2018

J VẠI MÁ V

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á