giá tị nhỏ nhất của biểu thức A=/x-22015/+2 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
a) Ta có : \(1-4x-2x^2=-\left(2x^2+4x-1\right)=-[2(x^2+2x+1)-3]=-[2(x+1)^2-3]\)
Lại có \(2\left(x+1\right)^2\ge0=>-[2(x+1)^2-3]\le-3\)
Dấu"=" xảy ra khi và chỉ khi \(x+1=0=>x=-1\)
Vậy giá trị lớn nhất của biểu thức đã cho bằng -3 khi x=-1
b)\(x^2-4x+y^2+2y-5=\left(x-2\right)^2+\left(y+1\right)^2-10\)
Lại có : \(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0=>\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=y+1=0=>x=2;y=-1\)
\(\text{a) }1-4x-2x^2\)
\(=\left(-2x^2-4x-2\right)+3\)
\(=-2\left(x^2+2x+1\right)+3\)
\(=-2\left(x+1\right)^2+3\)
\(\text{Vì }-2\left(x+1\right)^2\le0\)
\(\text{nên }-2\left(x+1\right)^2+3\le3\)
\(\text{Do đó: }GTLN=3\), dấu bằng xảy ra khi \(x=-1\)
\(\text{b) }x^2-4x+y^2+2y-5\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)-10\)
\(=\left(x-2\right)^2+\left(y+1\right)^2-10\)
\(\text{Vì }\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\text{nên }\left(x-2\right)^2+\left(y+1\right)^2\ge0\)
\(\text{hay }\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)
\(\text{Do đó: }GTNN=-10\), dấu bằng xảy ra tai \(x=2\)và \(y=-1\)
Min A = -1 <-> x=2/3
Min B =2 <-> x=0 ; y=1
Max C = 5 <-> x=1/2
Max D = 1/3 <-> x=2
H=/3-x/+/4+x/>=/3-x+x+4/=7. Min=7 khi (3-x)(4+x)>=0 hay -4<=x<=3
Để \(\frac{1}{x^2+2010}\)đạt GTLN thì \(x^2+2010\)đạt GTNN mà \(x^2\)\(\ge\)0
\(\Leftrightarrow\)\(x^2+2010\ge\)2010
\(\Rightarrow\)\(\frac{1}{x^2+2010}\le\frac{1}{2010}\)khi x = 0
Vậy \(\frac{1}{x^2+2010}\)đạt GTLN bằng \(\frac{1}{2010}\)khi x = 0
\(A=\left(x-1\right)^2+4>=4\forall x\)
Dấu '=' xảy ra khi x=1
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=1\)