Tính nhanh: \(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
A=\(\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+\frac{6}{13\cdot16}\)
A:2=\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
A:2=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\)\(\frac{1}{16}\)
A:2=\(1-\frac{1}{16}\)
A:2=\(\frac{15}{16}\)
A=\(\frac{15}{8}\)
vậy ...
Bạn ơi, có chắc là 6/280 ở cuối không.
Trả lời nhanh để mink giải câu này cho
Bài 1:
\(=\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}+\dfrac{1}{\left(x+13\right)\left(x+16\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}+\dfrac{3}{\left(x+13\right)\cdot\left(x+16\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+13}+\dfrac{1}{x+13}-\dfrac{1}{x+16}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+16}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{x+16-x-1}{\left(x+1\right)\left(x+16\right)}=\dfrac{5}{\left(x+1\right)\left(x+16\right)}\)
Bài 2:
\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+4\right)^2+\left(2c-1\right)^2=0\)
Dấu '=' xảy ra khi a=1; b=-4; c=1/2
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
1/2A=1/2(6/4+6/28+6/70+6/130+6/208)
= 3/4+3/28+3/70+3/130+3/208
= 1-1/4+1/4-1/7+..................-1/16
=1-1/16
=15/16 => A=15/8
=(1+1+1+1+1+1+1+1)+(1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45)
Đặt A = 1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Ta có:
A x 1/2= 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6=1/2x3=1/2-1/3
1/12=1/3x4=1/3-1/4
……………………
1/90=1/9x10=1/9-1/10
A x 1/2=1/2-1/3+1/3-1/4+1/4-1/5+…+1/9-1/10
A x 1/2=1/2-1/10=4/10
A=4/10:1/2=4/5
Vậy 4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45=1+1+1+1+1+1+1+1+4/5=8+4/5=44/5
\(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+...+\frac{46}{45}\)
\(=1+\frac{1}{3}+1+\frac{1}{6}+1+\frac{1}{10}+...+1+\frac{1}{45}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)(8 chữ số 1)
\(=8+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
Đặt A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Vậy A = \(\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
Do đó biểu thức trên là 8 + \(\frac{4}{5}\) = \(\frac{44}{5}\)
Đáp số: \(\frac{44}{5}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}\)
\(=\frac{6}{1x4}+\frac{6}{4x7}+\frac{6}{7x10}+\frac{6}{10x13}\)
\(=2\left(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+\frac{3}{10x13}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}\right)\)
\(=2\left(1-\frac{1}{13}\right)\)
\(=2x\frac{12}{13}\)
\(=\frac{24}{13}\)
\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}\)
\(=2\left(\frac{3}{1.4}+\frac{3}{1.7}+\frac{3}{7.10}+\frac{3}{10.13}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}\right)\)
\(\Leftrightarrow2=\left(1-\frac{1}{13}\right)\)
\(=2.\frac{12}{13}\)
\(=\frac{24}{13}\)